EDUCATIONAL QUALITY AND ASSESSMENT PROGRAMME

M

Rubric

2022

© Educational Quality and Assessment Programme, 2022
3 Luke Street, Nabua, Private Mail Bag, Suva, Fiji.
Telephone: (679) 3370733 Fax: (679) 3370021
All rights reserved. No part of this publication may be reproduced by any means without the prior permission of the Educational Quality and Assessment Programme.

Probability					
Item Number	Solution	Skill Level			
		1	2	3	4
1.7	Features of normal distribution: - Area under the curve adds up to 1 - Is symmetrical about the mean - Mean is always at 50% [mean $=$ median $=$ mode $]$ - The curve is bell shaped	Any one correct feature			
1.8a	$k=1-(0.2+0.2+0.3+0.2)=0.1$	Correct value as in evidence			
1.8b	$\begin{aligned} \operatorname{Var}(X)= & E\left(X^{2}\right)-[E(X)]^{2} \quad \text { Follow through from 1.8a } \\ & =\left[0.2(6)^{2}+0.2(7)^{2}+0.3(8)^{2}+0.2(9)^{2}+0.1(10)^{2}\right]-7.8^{2} \\ & =62.4-60.84 \\ & =1.56 \end{aligned}$ $E(x)=6(0.2)+7(0.2)+8(0.3)+9(0.2)+10(0.1)=7.8$	One of the following: - Identifies correct formula - Finds $E\left(X^{2}\right)$ correctly - Finds $E(X)$ - Finds $[E(X)]^{2}$ correctly	Correct answer obtained using correct formula [allow for slip]		
1.9	$\begin{aligned} P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\ & =0.3+0.2-0.3 \times 0.2 \\ & =0.5-0.06 \\ & =0.44 \end{aligned}$	One of the following: - Identifies correct formula - Finds $P(A \cap B)$ correctly - Evidence of multiplication 0.3×0.2	Correct answer obtained using correct formula [allow for slip]		
1.10		One of the following: - Finds correct Z values Z_{1} or Z_{2} - Draws the normal curve with the values - Finds $\mathrm{P}_{1}=0.1179$ or $\mathrm{P}_{2}=0.2881$ - Identifies the correct formula to find Z - Identifies the formula $E=n \times p$	Two of the following: - Finds correct Z values Z_{1} or Z_{2} - Draws the normal curve with the values - Finds $\mathrm{P}_{1}=0.1179$ or $\mathrm{P}_{2}=0.2881$ - Identifies the correct formula to find Z - Identifies the formula $E=n \times p$	Three of the following: - Finds correct Z values Z_{1} or Z_{2} - Draws the normal curve with the values - Finds $P_{1}=0.1179$ or $\mathrm{P}_{2}=0.2881$ - Identifies the correct formula to find Z - Identifies the formula $E=n \times p$ Finds $\mathrm{P}=0.406$	Correct expected number obtained using correct method [Allow for slip]

Modelling Using Graphical Methods					
Item	Solution	Skill Level			
Number		1	2	3	4
2.1	Features of linear function - General form $y=m x+c$ - Graph is a straight line - The highest power of x or independent variable is 1 - Domain: Real numbers	Gives one of the features listed			
2.2	- Breaks off at a certain point or multiple points - Gaps, holes, jump, sudden end - Limit at the point of discontinuity does not exist for most discontinuous function. - Not a continuous curve - Pencil lifted at least once while drawing	Gives one of the properties listed			
2.3	$\begin{aligned} g(x)=2(3)^{x} g(0) & =2(3)^{0} \\ & =2 \end{aligned}$	Finds the correct value.			
2.4	$x=-1, x=2$	Identifies one x value correctly	Both x values are correct.		
2.5	$\begin{array}{rl} y=a m^{x} & \log m=\text { slope } \\ \log y=\log a+x \log m & \\ =\frac{1.6-0.36}{30-0} \\ Y=A+B x & \\ \text { Y }=0.0413 \\ A=\log a=y-\mathrm{int} & m=100.0413 \\ =0.36 & =1.10 \\ a=10^{0.36}=2.29 & \end{array}$	One of the following - Takes log of both sides - Correctly writes in linear form - Finds y-int correctly - Finds slope correctly	Two of the following - Takes \log of both sides - Correctly writes in linear form - Finds y-int correctly - Finds slope correctly - Finds m or a correctly	Correct value of a and m using correct method. [allow for slip]	
2.6		Correct shape of the graph with y-int \& x-int at (0,0)		s Score	

Modelling Using Graphical Methods					
Item Number	Solution	Skill Level			
		1	2	3	4
2.7	$\begin{aligned} x^{\frac{3}{2}}-4 & =23 \\ x^{\frac{3}{2}} & =27 \\ x & =27^{\frac{2}{3}} \\ & =9 \end{aligned}$ Can also use \ln or \log to solve	One correct idea - Starts to solve by adding 4 on both sides - Gets $x^{\frac{3}{2}}=27$	Correct answer with correct method		
2.8	$\begin{array}{rl} e^{x-2} & =12 \\ \ln \left(e^{x-2}\right) & =\ln 12 \\ x & x-2=\ln 12 \\ & x=\ln 12+2=4.485 \end{array}$	Starts to solve the equation by taking \ln of both sides. (Cannot proceed further)	Correct answer obtained through correct method [allow for slip]		
2.9	Features - Consists of inequality signs such as >, < etc - Multiplying or dividing an inequality by negative number the sign is reversed - Taking reciprocal of both sides of an inequality changes direction of inequality	Any one correct idea/feature			
2.10		Correct shading			
2.11	$\begin{array}{rlrl} \hline(2,2) P & =3 x-2 y & (4,4) & P=3 x-2 y \\ & =3(2)-2(2) & & =3(4)-2(4) \\ & =2 & & =4 \\ (6,2) P & =3 x-2 y & \\ & =3(6)-2(2) & \\ & =14 \quad \therefore \text { Minimum value }=2 \end{array}$	One correct idea - Identifies the point $(2,2)$ for min value - Substitutes to find any other value (4 or 14)	Correct answer.		

Statistical Investigations					
Item Number	Solution	Skill Level			
		1	2	3	4
3.1	Features - Has many data points - Can determine whether a relationship is linear or not - Used to determine the outlier - Has dependent and independent variables	Gives one of the features listed.			
3.2	- Simple random sampling - Cluster sampling - Stratified sampling - Systematic sampling	Any one correct sampling method			
3.3	```Sample size - the number of observations in a survey/study size of part of the population chosen for survey number of individuals included in a research Note: (Size of the sample/population is incorrect)```	States the correct definition			
3.4	There is moderate and positive relationship between GPA and motivation achievement. This means that as the GPA increases, there is good chance that motivation achievement will also increase.	Only gives one idea e.g. the strength (moderate or positive) without any description.	Gives the two features of the description (moderate with positive relationship) with a statement between the 2 variables.		
3.5	$\begin{aligned} \hat{p} & =\frac{x}{n} \\ & =\frac{238}{400} \\ & =0.595 \end{aligned}$	One of the following - Correct formula - Correct substitution - Identifies n or x correctly	Correct answer using correct formula		
3.6	For 95% Confidence level, $\mathrm{Z}=1.96$ $\begin{aligned} & \overline{X_{1}}=175 \overline{X_{2}}=169 \sigma_{1}=15, \sigma_{2}=12, n_{1}=36, n_{2}=48 \\ & \left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z \times \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}=6 \pm 1.96 \times \sqrt{\frac{15^{2}}{36}+\frac{12^{2}}{48}} \\ & =6 \pm 5.961 \\ & \therefore 0.0389<\mu_{1}-\mu_{2}<11.961 \end{aligned}$	One of the following - Identifies correct Z value - Correct formula - Identifies x_{1} or x_{2} or σ_{1} or σ_{2} or n_{1} or n_{2} correctly - Finds standard error of the difference in sample means $=\sqrt{9.25}$ correctly $\text { S. Error }=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$	Two of the following - Identifies correct Z value - Correct formula - Identifies x_{1} or x_{2} or σ_{1} or σ_{2} or n_{1} or n_{2} correctly - Finds standard error of the difference in sample means $=\sqrt{9.25}$ correctly	Correct answer using correct formula and method [allow for slip]	

Numerical and Algebraic Methods										
Item Number	Solution					Skill Level				
						1	2	3	4	
4.6						One of the following - Computes and fills first two iterates correctly - Computes and fills some values correctly	Computes and fills first four iterates correctly	Computes and fills first 6 iterates correctly	Computes and fills all iterates correctly as well as gives the root to 2 decimal places [Allow for slip]	
	Iterations	a	b	$c=\frac{a+b}{2}$	$f(c)$					
	1	0.5	1	0.75	-0.328125					
	2	0.75	1	0.875	0.294921875					
	3	0.75	0.875	0.8125	-0.02612304					
	4	0.8125	0.875	0.84375	0.13192749					
	5	0.8125	0.84375	0.828125	0.05229568		Bonus Score			
	6	0.8125	0.828125	0.8203125	0.0129361					
	7	0.8125	0.8203125	0.8164062	-0.006631					
	$\begin{aligned} & f(x)=x^{3}+3 x-3 \\ & \begin{aligned} f(0.75) & =(0.75)^{3}+3(0.75)-3 \\ & =-0.328125 \end{aligned} \end{aligned}$ The last two values of c agree to 2 dp . Hence, the solution is 0.82									

1.8b Method 2

$\operatorname{Var}(x)=E(X-\mu)^{2}$

$$
=(6-7.8)^{2} \times 0.2+(7-7.8)^{2} \times 0.2+(8-7.8)^{2} \times 0.3+(9-7.8)^{2} \times 0.2+(10-7.8)^{2} \times 0.1
$$

$$
=1.56
$$

