

EDUCATIONAL QUALITY AND ASSESSMENT PROGRAMME

Scoring Rubric 2022

No. 108/3

with

C

[].

Form Seven Certīfīcate

South Pacific

© Educational Quality and Assessment Programme, 2022 3 Luke Street, Nabua, Private Mail Bag, Suva, Fiji. Telephone: (679) 3370733 Fax: (679) 3370021 All rights reserved. No part of this publication may be reproduced by any means without the prior permission of the Educational Quality and Assessment Programme.

Item	Skill level	Evidence (expected answers)	Level 1 (Unistructural)	Level 2 (Multistructural)	Level 3 (Relational)	Level 4 (Extended Abstract)
1.1	1	$\frac{\frac{2y}{3} - \frac{y}{4}}{\frac{y}{4}} = \frac{\frac{8y - 3y}{12}}{\frac{5y}{12}}$	Correct answer $\frac{5y}{12}$ or 0.42y OR Finds LCD = 12 'Allow for slips'			
1.2	1	Use elimination method: 2x - y = 7 Find y: + 3x + y = 13 $2x - y = 75x = 20$ $2(4) - y = 7x = 4$ $8 - y = 7-y = -1y = 1$	Correct answers x = 4 y = 1 OR Any correct value of x or y		<u>ostitution Method</u> = 2x – 73x + (2 · 7	(x – 7) = 13
1.3	1	$T = a + (n - 1)d$ $T - a = (n - 1)d$ $\therefore d = \frac{T - a}{(n - 1)}$	Correct answer OR Any correct step of minus <i>a</i> or divide by (<i>n</i> -1).			

SCORING RUBRIC FOR MATHEMATICS with CALCULUS

1.4	1	Factorise x^2 + 9x - 70 Factors of -70 = 14 x -5 9 = 14 + -5 (x + 14)(x - 5)	Correct two factors (x + 14)(x - 5) OR Any one correct factor	• Alternative: Quadratic Equation $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-(9) \pm \sqrt{(9)^2 - 4(1)(-70)}}{2(1)}$ $= \frac{-(9) \pm \sqrt{361}}{2} = \frac{-(9) \pm 18}{2}$ $= -14, 5 \rightarrow (x + 14)(x - 5)$
1.5	1	Solve $log_{16} x = \frac{3}{2}$	Correct answer $x = 64$	
		In base-index form: $16^{(3/2)} = x$	OR	
		$\therefore x = 64$	Writes the correct expression in Base- index form.	
			$16^{(3/2)} = x$	
1.6	1	Simplify $\frac{24x^4y^{11}z}{3x^2yz^7}$	Correct answer OR	
		$= 8x^{4-2} \cdot y^{11-1} \cdot z^{1-7}$ = $8x^2y^{10}z^{-6}$ or $\frac{8x^2y^{10}}{z^6}$	Has shown any correct use of law of indices – subtracting powers	
1.7	1	SimplifyAlternative Solution $3log4 - 2log2$ $3log4 - 2log2$ $= log4^3 - log2^2$ $= 3log4 - log2^2$ $= log64 - log4$ $= 3log4 - log4$	Correct answer log16 OR	

		$= log \frac{64}{4} = 2log 4$ = log 16 = log 4 ² = log 16	Has shown any correct use of logarithmic laws. $log 4^{3}$ or $log 2^{2}$ or $log \frac{64}{4}$		
1.8	1	$2x^{3} + 5x$ $- 6 \text{ divide by } (x$ $- 1)$ By Remainder Theorem = f (1) = remainder $\text{Let } f(x) = 2x^{3} + 5x - 6$ $f(1) = 2(1)^{3} + 5(1) - 6$ $f(1) = 1 \rightarrow remainder$ Alternative solution: Long Division	Correct answer Remainder = 1 OR Finds f (1)		
1.9	1	Expand and simplify $(1 - 2x)^4$ $\binom{4}{0}(1)^4(-2x)^0$ = 1.1.1 = 1 $\binom{4}{1}(1)^3(-2x)^1$ = 4.1.(-2x) = -8x $\binom{4}{2}(1)^2(-2x)^2$ $= 6.1.4x^2$ $= 24x^2$	Correct answer 'Allow for slips' OR Writes the binomial theorem correctly for a = 1, b = -2x and n = 4. OR Writes any correct term in the expansion.		

		$\binom{4}{3}(1)^{1}(-2x)^{3}$ = 4.18x ³ = -32x ³ $\binom{4}{4}(1)^{0}(-2x)^{4}$ = 1.1.16x ⁴ = 16x ⁴ 1-8x+24x ² -32x ³ +16x ⁴			
1.10	1	$\sqrt{8} + \sqrt{32}$ $= \sqrt{4 \times 2}$ $+ \sqrt{16 \times 2}$ $= \sqrt{4} \cdot \sqrt{2}$ $+ \sqrt{16} \cdot \sqrt{2}$ $= 2\sqrt{2} + 4\sqrt{2}$ $= 6\sqrt{2}$	Correct answer $6\sqrt{2}$ OR Uses rules of surds to simplify $\sqrt{8} = \sqrt{4 \times 2} \text{ or}$ $\sqrt{32} = \sqrt{16 \times 2}$		
1.11	1	$\frac{1+x}{8} = \frac{2+x}{4}$ $4(1+x) = 8(2+x)$ $4+4x = 16+8x$	Correct answer 'Allow for slips' OR		

		4x - 8x = 16 - 4 $-4x = 12$ $x = -3$	Correct expansion on both sides 4 + 4x = 16 + 8x	
1.12	1	$2^{x-3} = 32$ Alternative Solution $2^{x-3} = 2^5$ $\ln 2^{x-3} = \ln 32$	Correct answer OR	
		Equate the powers $(x-3) \ln 2 = \ln 32$ $x-3=5$ $x-3=\frac{\ln 32}{\ln 2}$	Takes ' <i>ln</i> ' or 'log' on both sides. OR	
		$x = 8 \qquad x - 3 = 5$ $x = 8$	Writes $32 = 2^5$	
1.13 a	1	$z \times w = 2i(3+i)$ $= 6i + 2i^2$	Correct answer OR	
		= 6i + 2(-1) = 6i - 2 or - 2 + 6i	Any substitution of -1 into i ²	
			OR Has $6i + 2i^2$	

1.13b 1	Plot z = 2 <i>i</i> on the Argand Diagram	Correct plotting of z			
1.14 2	Let $f(x) = x^3 + 2x^2 - 5x - 6$ By Factor Theorem: f(-1) $= (-1)^3$ $+ 2(-1)^2$ - 5(-1) - 6 $= 0 \rightarrow (x + 1) is \ a \ factor$ $f(2) = (2)^3 + 2(2)^2 - 5(2) - 6$ $= 0 \rightarrow (x - 2) is \ a \ factor$ f(-3) $= (-3)^3$ $+ 2(-3)^2$ - 5(-3) - 6 $= 0 \rightarrow (x + 3) is \ a \ factor$ OR	Any one correct factor OR Uses factor theorem: f (a) = 0, (x - a) is a factor f (-a) = 0, (x + a) is a factor.	Correct answer Three correct factors (x + 1)(x - 2)(x + 3) OR Two correct factors Alternate Method Using coefficients -1 -1 -1 1 2 -5 1 1 -6 $x^2 + x - 6$ (x + 3)(x - 2) Factors:	only: 6 -6 0 5 R	emainder (x + 1) is a factor 3)

			OD			
		To find the other factors;	OR			
		$x^2 + x - 6$	TT			
			Has			
		$x+1 x^3 + 2x^2 - 5x - 6$	$(x+1)(x^2+x-6)$			
		$\begin{array}{c c} x+1 & x^3+2x^2-5x-6 \\ & -\underline{x^3+x^2} \\ & x^2-5x \end{array}$				
		$x^2 - 5x$	$(x-2)(x^2+4x+3)$			
		$\frac{-x^2+x}{-6x-6}$	$(x+3)(x^2-x-2)$			
		-6x - 6	$(x + 3)(x^2 - x - 2)$			
		$-\underline{-6x-6}$				
		• •				
		Factors are: $(x + 1)(x^2 + x - 6)$				
		(x+1)(x-2)(x+3)				
1.15	4	$Z^{4} = 256 \left(\cos 120^{\circ} + i \sin 120^{\circ} \right) \text{ Im}$	Has the correct	Has only one root	Has only two roots	Has all the 4 roots
	-	Angles: Z_1	value of $r = 4$	correct without	correct without	correct and
		$\theta = \frac{360^{\circ}}{4} = 90^{\circ} apart$		the Argand	the Argand	represented on the
		$0 = \frac{1}{4} = 90 \text{ apart}$	OR	diagram.	diagram.	Argand diagram.
		120°				0 0
		$\theta_0 = \frac{120^\circ}{4} = 30^\circ$	Uses De Moivre's	OR	OR	Or
		Re	theorem.			All 3 roots either
		$\theta_1 = 30 + 90 = 120^\circ$ Z_2		Writes only the	Has all the roots	in rectangular
		$\theta_2 = 120 + 90 = 210^\circ$ Z ₃	$r^{\frac{1}{4}}\left(cis\frac{\theta+360k}{4}\right)$	angles.	correct except for	form or polar
		$\theta_3 = 210 + 90$	$\Gamma^{4}(cis \underline{})$		R.	form.
		= 300 °				
			OR			Or
						At least 3 roots
		$r = 256^{\frac{1}{4}} = 4$	Any correct			correct.
		7 – 200° – T	argument, θ			
		$z_0 = 4cis30^\circ$				
		$=4cis\frac{\pi}{6}$				
		0				
		= 3.46 + 2i				

2.1	1	$z_{1} = 4cis120^{\circ}$ $= 4cis\frac{2\pi}{3}$ $= -2 + 3.46i$ $z_{2} = 4cis210^{\circ}$ $= 4cis\frac{7\pi}{6}$ $= -3.46 - 2i$ $z_{3} = 4cis300^{\circ}$ $= 4cis\frac{5\pi}{3}$ $= 2 - 3.46i$ $\cot \theta = \frac{1}{\tan \theta}$	Correct answer OR		
2.2	2	$\cot\left(\frac{\pi}{4}\right)$ $=\frac{1}{\tan\left(\frac{\pi}{4}\right)}$ $\cot\left(\frac{\pi}{4}\right) = \frac{1}{1}$ $= 1$ $(1 + \cot^{2}\theta)(1 - \cos^{2}\theta) = 1$ LHS: $(1 + \cot^{2}\theta)(1 - \cos^{2}\theta)$	Substitutes the reciprocal identities $cot \theta = \frac{1}{\tan \theta}$ Has shown that $(1 + \cot^2 \theta) = \csc^2 \theta$ OR	Correct steps shown to get 1 on the L HS	
		LHS: $(1 + \cot^{2} \theta)(1 - \cos^{2} \theta)$ $(\csc^{2} \theta)(\sin^{2} \theta)$ $\left(\frac{1}{\sin^{2} \theta}\right)(\sin^{2} \theta)$	$(1 + \cot^2 \theta) = \csc^2 \theta$ OR $(1 - \cos^2 \theta) = \sin^2 \theta$	shown to get 1 on the LHS.	

	1 = RHS		
2.3 1	$ \frac{1}{\sqrt{2}\sin\theta} = 1 $ $ \sin\theta = \frac{1}{\sqrt{2}} $ $ \theta \text{ falls on quadrant I and II} $ $ \theta = 45^{\circ}, 135^{\circ} $ $ \theta \epsilon \{45^{\circ}, 135^{\circ}\} \text{ or } \theta \epsilon \left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\} $	Correct answer OR One correct angle either in degrees or radians.	
2.4 1	$A = 2$ $Period = \frac{2\pi}{1}$ $= 2\pi (360^{\circ})$ 0 π	Correct -ve cosine curve shape OR Correct amplitude OR Correct period	

2.5	2	Compound Angle Formula: $\sin A \cos B + \cos A \sin B = \sin(A + B)$ $\sin 10^{\circ} \cos 80^{\circ} + \cos 10^{\circ} \sin 80^{\circ} = \sin(10^{\circ} + 80^{\circ})$ $= \sin 90^{\circ}$ = 1	Writes the correct compound angle formula. OR Only uses calculator to get 1 or 0.98	Correct answer		
2.6	3	$A = \frac{max - min}{2}$ $= \frac{75 - 3}{2} = \frac{72}{2}$ $= 36$ $B = \frac{360^{\circ}}{0.5} = \frac{2\pi}{0.5}$ $= 4\pi \text{ or } 720^{\circ}$ Vertical shift: $D = \frac{max + min}{2}$ $= \frac{75 + 3}{2} = \frac{78}{2}$ $= 39$ $C = 0 - \text{ no horizontal shift}$ $\therefore h(t) = 36 \cos 4\pi t + 39$	Was able to identify the amplitude A = 36 OR Has C = 0 OR Has D = 39	Was able to find the value of B correctly. $B = \frac{360^{\circ}}{\frac{1}{2}} = \frac{2\pi}{\frac{1}{2}}$ $= 4\pi \text{ or } 720^{\circ}$ OR Finds any two from A, C and D correctly.	Correct answers. A = 36 $B = 4\pi \text{ or } 720^{\circ} \text{ or } 12.57$ C = 0 D = 39	
3.1	1	g(x) is discontinuous at: $x = 2$	Correct answer			

3.2	2	$\lim_{x \to -3} \frac{x^2 + 5x + 6}{x + 3} = \frac{(-3)^2 + 5(-3) + 6}{(-3) + 3} = \frac{0}{0}$ $\rightarrow limit may exist$ $\lim_{x \to -3} \frac{(x + 3)(x + 2)}{x + 3}$ L'Hopital's Rule: $\lim_{x \to -3} x + 2$ $\lim_{x \to -3} \frac{2x + 5}{1}$ = (-3) + 2 $= 2(-3) + 5= -1$ $= -1$	Was able to factorise the numerator into (x + 3)(x + 2) OR Substitutes -3 into the expression OR	Correct answer		
			Differentiates the numerator or denominator.			
3.3	2	$\lim_{x\to\infty} \frac{5x(x-2)}{3x^2-2x+1}$	Expand $5x(x-2)$ Correctly to get $5x^2 - 10x$	Correct answer		
		$\lim_{x \to \infty} \frac{5x^2 - 10x}{3x^2 - 2x + 1}$	OR	Alternative Met Some students n	<u>hod</u> : night only use the	highest
		$\lim_{x \to \infty} \frac{\frac{5x^2}{x^2} - \frac{10x}{x^2}}{\frac{3x^2}{x^2} - \frac{2x}{x^2} + \frac{1}{x^2}}$	Identifying the variable with the highest power as x^2	POWER: $\lim_{x\to\infty}$	$\frac{5x^2}{3x^2} = \frac{5}{3}$	
		$\lim_{x\to\infty} \frac{5-\frac{10}{x}}{3-\frac{2}{x}+\frac{1}{x^2}}$				
		$=rac{5-0}{3-0+0}$				

	2	$=\frac{5}{3}$ $f(x) = 4x^{3} - 3x + e^{x} - 1$ $f'(x) = 12x^{2} - 3 + e^{x}$ $f''(x) = 24x + e^{x}$	Differentiates $f(x)$ correctly. $f'(x) = 12x^2 - 3 + e^x$	Correct answer $f''(x) = 24x + e^x$		
3.5	4	$s(t) = t^{3} + 3t^{2} + 2t$ $1^{st} \text{ Derivative:}$ $v(t) = s'(t) = 3t^{2} + 6t + 2$ $2^{nd} \text{ Derivative:}$ $a(t) = v'(t) = 6t + 6$ Initial Acceleration: $t = 0$ s: $a_{t=0} = a(0)$ $\Rightarrow a(0) = 6(0) + 6$ $\Rightarrow a = 6 \text{ m/s}^{2}$	Shows any sign of expansion to s(t)ORShows any sign of differentiation.ORSubstitutes t = 0 to any equation.	Was able to differentiate s(t) once correctly $3t^2 + 6t + 2$	Was able to differentiate s(t) twice correctly. 6t + 6	Correct answer

3.6	4	Given that $\frac{dV}{dt} = 60$, find $\frac{dh}{dt}$ $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$ Using Similar Triangles: $V = \frac{1}{3}\pi r^2 h$ $V = \frac{1}{3}\pi \left(\frac{h}{3}\right)^2 r^{15}$ $V = \frac{\pi}{27}h^3$ $\frac{dV}{dh} = \frac{3\pi}{27}h^2$ $\frac{dh}{dV} = \frac{9}{\pi h^2}$ $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$ $\frac{dh}{dt} = 60 \times \frac{9}{\pi h^2} = \frac{540}{\pi h^2} = \frac{540}{\pi \times 3^2}$ $\frac{dh}{dt} = \frac{60}{\pi} cm/s \text{ or 19.10 cm/s}$	Writes any of these rates of change: $\frac{dV}{dt}, \frac{dh}{dt}, \frac{dV}{dh}$ and $\frac{dh}{dV}$ OR Finds r correctly using similar triangles. OR Shows any sign of differentiation to V. $\frac{\text{Alternate metho}}{V = \frac{\pi}{27}h^3} \rightarrow \frac{dV}{dt}$	OR Writes the correct Chain rule: $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$ $\frac{dt}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$ $\frac{dt}{dt} = \frac{\pi}{27} \cdot 3h^2 \cdot \frac{dh}{dt} \rightarrow \frac{dh}{dt}$	OR $\frac{dh}{dV} = \frac{9}{\pi h^2}$ ntiation (NO CHAI	$(3)^2 \cdot \frac{dh}{dt}$
4.1	1		Writes dV/dt = 60 Correct answer			
7.1	I	$\int x^{1/2} dx$ = $\frac{x^{1/2+1}}{\frac{1}{2}+1} + C$	Do not penalise if <i>C</i> is missing OR			

		$=\frac{x^{3/2}}{\frac{3}{2}}+C$	Writes $\frac{x^{3/2}}{\frac{3}{2}}$		
		$=\frac{2}{3}x^{3/2}+C$			
4.2	1	$\int 2 e^{5x} dx$	Correct answer Do not penalise if <i>C</i>		
		$2\int e^{5x} dx$	is missing OR		
		$=2.\frac{e^{5x}}{5}+C$	Has $\frac{e^{5x}}{5}$		
		$=\frac{2}{5}e^{5x}+C$			
4.3	2	$\int_{\pi/6}^{\pi/2} 2\cos x \ dx$	Integrates 2cos x Correctly to get 2 sin x OR	Correct answer	
		$= \left[2\sin x\right]_{\pi/6}^{\pi/2}$ $= \left[2\sin\frac{\pi}{2}\right] - \left[2\sin\frac{\pi}{6}\right]$	Shows the Fundamental Theorem of		
		= [2] - [1]	Calculus: $F\left(\frac{\pi}{2}\right) - F\left(\frac{\pi}{6}\right)$ OR		
		= 1	Converts $\frac{\pi}{2}$ radians		

			to 90° or $\frac{\pi}{6}$ to 30°			
4.4	2	$Area = \int_2^3 (x^2 - 4) dx$	Integrates x ² or 4 correctly OR	Correct answer		
		$= \left[\frac{x^{3}}{3} - 4x\right]_{2}^{3}$ $= \left[\frac{(3)^{3}}{3} - 4(3)\right] - \left[\frac{(2)^{3}}{3} - 4(2)\right]$ $= \left[-3\right] - \left[-5\frac{1}{3}\right]$	Shows the Fundamental Theorem of Calculus: F(3) - F(2)			
		$\therefore Area = 2\frac{1}{3} sq. units$				
4.5 a	2	v(t) = 180 - 10t Stone at rest: $v = 0 m/s$ 0 = 180 - 10t 10t = 180 t = 18 s	Any substitution of $v = 0$ for stone at rest.	Correct answer		
4.5 b	3	v(t) = 180 - 10t Displacement Equation: $h(t) = \int v(t) dt$	Was able to integrate any term correctly.	Uses the initial conditions to find the constant. C = 20	Correct answer OR	
		$= \int (180 - 10t) dt$ = $180t - \frac{10t^2}{2} + C$	OR Shows any sign of integration.	OR	Has the correct expression for $s(t)$: $h(t) = 180t - 5t^2 + 20$	

constant of proportionality $(k > 0 \Rightarrow growth rate)$ $\frac{dN}{dt} \alpha N$ $\frac{dN}{dt} = kN$ $\int \frac{dN}{N} = \int k dt$ lnN = kt + C	$\frac{N}{V} = k dt$ $N = N_0 e^{kt}$ $N = $
---	--

Finds half of population to be 6000
OR
Finds three-quarter of population to be
9000