Pacific Community Communauté du Pacifique EDUCATIONAL QUALITY AND ASSESSMENT PROGRAMME

No. 103/3

Scoring Rubric 2022

South Pacific Form Seven Certificate

-E N S R Y

© Educational Quality and Assessment Programme, 2022

3 Luke Street, Nabua, Private Mail Bag, Suva, Fiji. Telephone: (679) 3370233 Fax: (679) 3370021 All rights reserved. No part of this publication may be reproduced by any means without the prior permission of the Educational Quality and Assessment Programme.

SLO	Item	SL	Evidence	Student Response Level				
	NO.			Extended Abstract 4	Relational 3	Multistructural 2	Unistructural 1	
Strand 1: Atomic Structure, Bonding and Related Properties								
Che1.1.1.2	1.1a	1	D				D	
Che1.1.1.3	1.1b	1	A				A	
Che1.1.3.6	1.1c	3	The N-H bonds in NH₃ are polar. It also has an unsymmetrical shape. The dipole moments do not cancel out due to the asymmetrical shape (has a net dipole moment), resulting in the overall molecule as polar.		Two or more correct ideas are given which are linked, e.g., the bolded texts in evidence.	At least two independent correct ideas are given, e.g., the N-H bonds in NH ₃ are polar and NH ₃ has an asymmetrical shape.	One correct idea is given, e.g., the N-H bonds in NH ₃ are polar.	
Che1.1.3.8	1.1d	3	HCl, HBr and HI have both, permanent dipole-dipole forces of and London dispersion forces. For similar substances like HCl, HBr and HI, London dispersion forces increases with increasing molecular mass. Therefore, more energy is required to overcome the London dispersion forces in HI than HBr and HCl. However, due to very high electronegativity of F, HF is most polar and has hydrogen bonding present it. Hence, it has the highest boiling point.		Two or more correct ideas are given which are linked, e.g., the bolded texts in evidence.	At least two independent correct ideas are given, e.g., London dispersion forces increase with increasing molecular mass and HF has hydrogen bonding present in it.	One correct idea is given, e.g., London dispersion forces increase with increasing molecular mass.	
Che1.2.1.1	1.2a	1	A reaction where two light nuclei merge to form a single heavier nucleus.				Correct definition is given.	
Che1.2.1.3	1.2b	1	$^{14}_{7}$ N				Correct product is given.	
Che1.2.4.1	1.2c	4	The more material the radiation can pass through, the greater the penetration power and the more dangerous they are. As penetrating depends on the size of particles, bigger the size lesser the penetration power. Alpha particles have the least penetration power and can be stopped by a thick sheet of paper, a layer of clothes or outer layer of dead skin on people. Beta particles are much smaller than alpha particles and therefore, their small size gives them much greater penetration power. They can be stopped by a one-quarter inch thick sheet of aluminum. Gamma rays have the greatest penetration power. They may pass all the way through a human body without striking anything. They require several inches of dense material (like lead) to shield them. Source: https://chem.libretexts.org/ Radiation can have destructive effects but can also be used in medicine, industry and electricity generation. For example, the	Ideas are correctly generalised to everyday life situations, e.g., comparing and contrasting the penetrating ability of radiations based on their properties, but uses examples to justify real life application.	Two or more correct ideas are given which are linked, e.g., comparing and contrasting the penetrating ability of radiations based on their properties.	At least two independent correct ideas are given, e.g., penetrating abilities of two or more radiations.	One correct idea is given, e.g., penetrating ability of one of the radiations.	

			of useful applications which include:			
			materials i.e. paper			
			 treatment of eve and bone cancers strontium-90 or 			
			strontium-89 are commonly used			
			Tritium is used in some phosphorescent lighting typically			
			for emergency lighting as it requires no power			
			 Fluorine-18 is commonly used as a tracer for positron 			
			emission tomography (PET)			
Che1.3.1.2	1.3a	1	Tetrachlorocuprate(II) ion			Correct name is given.
Che1.3.2.2	1.3b	2	Partially filled d orbitals		Two or more independent	One correct idea is given,
			 Unpaired d electrons 		correct ideas are given,	e.g., type of ligand.
			 Type of ligand 		e.g., as given in evidence.	
			 Splitting of d-orbitals 			
			 d-d electronic transitions 			
			 Ability to absorb and re-emit light of different wavelengths 			
Che1.3.3.2	1.3c	3	In water, CuSO ₄ forms a light blue aquo complex of	Two or more correct ideas	At least two independent	One correct idea is given,
			$[Cu(H_2O)_6]^{2+}$ When ammonia solution is added into this	are given which are	correct ideas are given,	e.g., balanced equation for
			solution, as a weak base it forms hydroxide ion:	linked, e.g., equations for	e.g., equations for the	the formation of a species
				the formation of different	formation of two or more	responsible for one of the
			$NH_{3 (aq)} + H_2O_{(l)} \rightleftharpoons NH_4^+_{(aq)} + OH^{(aq)}$	species responsible for	species responsible for the	observations.
				the observations, given	observations.	
			The hydroxide ion reacts with $[Cu(H_2O)_6]^{2+}$ to form the	and related in a logical		
			Insoluble, pale blue copper hydroxide precipitate, $Cu(OH)_2$. It	order.		
			is sufficient to represent this reaction as:			
			C_{12}^{2} + 2011 $\rightarrow C_{12}^{2}$			
			Cu (aq) + 2OH (aq) \leftarrow Cu(OH)2 (s)			
			The precipitate then discolves in excess ammonia to form a			
			deep blue solution of $[Cu(NH_a)]^{2+}$ complex. It is sufficient to			
			represent this reaction as:			
			C_{11}^{2+} (co) + 4NH ₂ (co) \Rightarrow $C_{11}(NH_2)_{4}^{2+}$ (co)			
Strand 2: E	Energy C	Chang	es in Chemical and Physical Processes			
Che2.1.1.3	2.1a	1	A			A
Che2.1.1.2	2.1b	1	C			С
Che2.1.1.1	2.1c	1	В			В
Che2.1.2.2	2.1d	2	$C_2H_5OH_{(l)} \rightarrow C_2H_5OH_{(g)} \Delta_{vap}H^\circ = 42.3 \text{ kJ mol}^{-1}$		At least two independent	One correct idea is given,
					correct ideas are given,	e.g.
					e.g.	$C_2H_5OH_{(\ell)} \rightarrow C_2H_5OH_{(g)}$
					$C_2H_5OH_{(\ell)} \rightarrow C_2H_5OH_{(g)}$	
				_	and $\Delta_{vap}H^{\circ} = 42.3 \text{ kJ mol}^{-1}$.	
Che2.1.3.4	2.1e	3	Reverse the first equation as well as the sign on ΔH .	Two or more correct ideas	At least two independent	One correct idea is given,
	1	l		are given and linked e.g.	correct ideas are given,	e.g., the first equation is

			The other equations remain as it is. Add all the ΔH values to obtain ($\Delta_c H$) of magnesium: MgCl _{2 (aq)} + H ₂ O (t) \rightarrow MgO (s) + 2HCl (aq) ΔH = +74.66 kJ Mg (s) + 2HCl (aq) \rightarrow MgCl _{2 (aq)} + H _{2 (g)} ΔH = -427.99 kJ H _{2 (g)} + $\frac{1}{2}$ O _{2 (g)} \rightarrow H ₂ O (t) ΔH = -285.50 kJ Mg (s) + $\frac{1}{2}$ O _{2 (g)} \rightarrow MgO (s) $\Delta_c H$ = -638.83 kJ	relating the enthalpy of combustion of magnesium to the other three equations by rearranging the first equation and using the Hess's law to calculate $\Delta_c H$.	e.g. the first equation or sign on ΔH is reversed and all ΔH values are added.	reversed.
Strand 3: A	queous	s Equi	librium Systems			
Che3.1.1.3	3.1a	1	C			С
Che3.1.2.6	3.1b	2	 The buffer will resist a decrease in pH upon addition of HCI. HCI is strong acid - a source of H⁺ ions. NH₃ will react with the additional H⁺ ions to form NH₄CI. NH_{3 (aq)} + H⁺ (aq) → NH⁺_{4 (aq)} 		At least two independent correct ideas are given, e.g., as given in evidence.	One correct idea is given, e.g., NH ₃ will react with the additional H ⁺ ions to form NH ₄ Cl.
Che3.1.1.2	3.1c	1	С			С
Che3.1.3.2	3.1d	3	$\begin{split} & \mathcal{K}_{\rm s} = [{\rm CH}_{3}{\rm COO^{-}}][{\rm H}_{3}0^{+}]/[{\rm CH}_{3}{\rm COOH}] \\ {\rm Let} \; [{\rm H}_{3}0^{+}] = {\rm x. \ Then:} \\ & 1.8 {\rm x} \; 10^{-5} = \frac{({\rm x} \;)({\rm x} \;)}{0.667 {\rm -x}} \cong \frac{{\rm x}^2}{0.667} \\ & \underline{Note}: \; {\rm x \ in \ the \ denominator \ is \ considered \ to \ small \ compared \ to \ 0.667, \ so \ it \ is \ ignored. \ Therefore, \\ & {\rm x}^2 = 1.2 {\rm x} \; 10^{-5} \\ & {\rm x} = 3.5 {\rm x} \; 10^{-3} \\ & [{\rm H}_{3}0^{+}] = 3.5 {\rm x} \; 10^{-3} \; M \\ & {\rm pH} = -\log(3.5 {\rm x} \; 10^{-3}) = 2.5 \end{split}$	Two or more correct ideas are given and linked e.g. Using the K_a expression, $[H_3O^+]$ from the ethanoic acid present in the vinegar is related to the pH of vinegar.	At least two independent correct ideas are given e.g. <i>K</i> _a expression is given and pH is calculated.	One correct idea is given, e.g., <i>K</i> _a expression is given.
Che3.1.1.5	3.1e	1	Neutral or pH = 7			One correct idea is given.
Che3.1.2.1	3.1f	2	$K_{c} = \frac{[COC\underline{b}]}{[CO][C\underline{b}]} \ 1.23 \times 10^{3} = \frac{[COC\underline{b}]}{(0.012)(0025)}$ $[COCl_{2}] = (0.012)(0025)(1.23 \times 10^{3})$ $[COCl_{2}] = 0.369M$		At least two independent correct ideas are given e.g. <i>K</i> _c expression is given and [CoCl ₂] is evaluated.	One correct idea is given, e.g., <i>K</i> _c expression is given.
Che3.2.1.1	3.2a	1	Solubility is the maximum amount of a solute that will dissolve in a given amount of solvent at a specified temperature or pressure (in the case of gaseous solutes).			Correct definition is given.
Che3.2.2.3	3.2b	2	Let molar solubility of $CaSO_4 = s$. Then:		At least two independent correct ideas are given, e.g. the correct K_{sp} expression is derived and	One correct idea is given, e.g., the correct K_{sp} expression is derived.

			CaSO ₄ (s) \sim Ca ²⁺ (aq) + SO ₄ ²⁻ (aq) Initial (M) 0.00 0.00 Change (M) + s + s Equilibrium (M) s s $K_{sp} = [Ca^{2+}] [SO_4^{-2}]$ 2.4 × 10 ⁵ mol ² L ⁻² = s.s = s ²			solubility is calculated.			
Che3.2.1.2	3.2c	1	 s = 4.3 × 10⁻³ mol L⁻¹ Solubility of CaSO₄ will decrease. The presence of sulphate ions depresses the ionisation of calcium sulphate. This will cause the equilibrium to shift to the left. 				Any one correct idea is given.		
Strand 4: C	Oxidatio	n–Re	duction Reactions				1		
Che4.1.2.2	4.1a	2	Electrolytic Cell			At least two independent correct ideas are given e.g. electron flow direction for galvanic and electrolytic cells are given.	One correct idea is given, e.g., electron flow direction for galvanic cell is given.		
Che4.1.2.3	4.1b	2	Galvanic cell - Battery - Fuel cell Electrolytic cell - Electroplating - Electrolysis of NaCl, H ₂ O, etc - Recharging batteries			At least two independent correct ideas are given e.g. one application of each: galvanic and electrolytic cell.	One correct idea is given, e.g., one application of galvanic cell.		
Strand 5: C	Strand 5: Organic Chemistry								
Che5.1.3.11	5.1a	3	 Identifying the functional group: The compound is an alcohol. It will have a suffix of -ol. Finding the longest carbon chain: There are four carbon atoms in the longest chain with single bonds between the carbon atoms. The prefix of the compound will contain butan Number the carbon atoms in the longest chain The numbering is done to ensure the carbon with alcohol group has the lowest number, which is the first carbon (1). There is a CH₃ (methyl) substituent on the third carbon. The substituent will be indicated as 2-methyl. 		At least two correct ideas are given and linked, e.g. IUPAC naming steps/rules are logically stated in order to arrive at the name of the compound.	At least two independent correct ideas are given e.g. IUPAC naming steps/rules are listed.	One correct idea is given, e.g., one IUPAC naming step/rules is stated.		

			5. Combine the elements of the name into a single word.			
Che5 1 1 1	5 1h	1	Molecules of the same formula but having a different			Correct definition is given
01100.1.1.1	0.15		arrangement of their atoms.			
Che5.1.2.2	5.1c	2	Several isomers (constitutional, functional and stereoisomers)		At least two independent	One correct idea is given,
			are possible, however, at least two isomers must be given, e.g.		correct ideas are given,	e.g., any one isomer of
					e.g., any two isomers of	Compound A is given.
			$H_3C - CH - CH_2 - CH_2 - OH = H_3C - CH - CH_2 - CH_2 - CH_3$		Compound A are given.	
			CH ₃ ÓH			
			CH ₃ CH ₃			
			H ^{MM} CH ₂ CH ₃ CH ₃ CH ₂ CH ₃			
Che5 2 1 1	5 22	1				Correct name of reaction
01165.2.1.1	J.2a	'				is given.
Che5.2.1.2	5.2b	1	Any one of the following:			One correct reagent is
			- MNU ₄ /UH CrO./H-SO./acatana (Janas avidation)			given.
			- R_1O_4 (ruthenium tetroxide)			
			- PDC/DMF			
Che5.2.2.8	5.2c	2			At least two independent	One correct idea is given,
			SOCI2 or PCI3		correct ideas are given,	e.g., the reagent for the
			O or PCIs		e.g., the reagent for the	reaction.
			CH_3-CH_2-CH-C' \longrightarrow CH_3-CH_2-CH-C'		the structure of the acyl	
			ĊH ₃ ÔH ĊH ₃ ČH		chloride	
Che5.2.2.4	5.2d	2	Reactant A is HCl or hydrogen chloride.		At least two independent	One correct idea is given,
			Reactant B is CH_3CH_2Br or bromoethane, an alkyl halide. Br H		correct ideas are given,	e.g., name/ formula/
					structure/ type of both	A.
					Reactant A and B.	
Che5.2.2.10	5.2e	2	Product C is CH ₃ NHCOCH ₃ or N-methylethanamide, an amide.		At least two independent	One correct idea is given,
					correct ideas are given,	e.g., name/ formula/
					structure/ type of Product	
			⊢ h N−C−H		C and D.	
			нн			
			Product D is HCl or hydrogen chloride.			

Che5.2.2.6	5.2f	2	 Any one of the follwing tests: KMnO₄/H*: purple colour is changed to light pink or colourless with aldehyde but no change with ketone. K₂CrO₄/H*: yellow colour is changed to green with aldehyde but no change with ketone. K₂Cr₂O₇/H+: orange colour is changed to green with aldehyde but no change with ketone. Tollens' reagent: silver mirror is formed with aldehyde but no change with ketone. Fehling's/Benedict's solution: A brick red colour is formed with aldehyde but no change with ketone. 			At least two independent correct ideas are given, e.g., reagent is given and observation is stated.	One correct idea is given, e.g., reagent is given.
Che5.2.1.4	5.2g	1	$n \begin{bmatrix} 0 \\ 0 \\ - C - CH_2 \end{bmatrix} = 0$				The ester link is circled.
Che5.2.1.3	5.2h	1	A reaction where monomers possessing two or more kinds of functional groups react with each other in such a way that parts of these monomers combine to form a small molecule (often H_2O) which is eliminated in the process.				Correct definition is given.
Che5.2.2.11	5.2i	2	$ \begin{array}{c} $			At least two independent correct ideas are given, e.g., both monomers are given.	Any one correct idea given, e.g., one monomer is given.
Che5.2.4.4	5.2j	4	Aldehydes are organic compounds which incorporate a carbonyl functional group, C=O. For example, methanal, ethanal, etc. H H CH_3 H methanal ethanal Aldehydes are among the organic compounds which are easily oxidized. What is formed when aldehydes are oxidised depends on whether the reaction is done under acidic or alkaline conditions. Under acidic conditions, the aldehyde is oxidized to a carboxylic acid. R C H R C H	The response should have correctly justified the chemical properties of aldehydes and associated it with an everyday application.	At least two correct ideas are given, which are clearly linked, e.g., one reaction of aldehydes is given, and the reaction is related to an everyday application.	At least two independent correct ideas are given, e.g., one reaction of aldehyde and an everyday application of aldehydes.	Any one correct idea is given, e.g., one reaction of aldehyde is stated.

