

GENERAL INFORMATION

The Office of the Educational Quality and Assessment Programme (EQAP) is located at:

3 Luke Street, Nabua Suva Fiji

Tel: (679) 3315600 Email: eqap@spc.int Web: www.spc.int / www.eqap.org.fj

Any correspondence regarding this syllabus should be addressed to:

The Director EQAP Pacific Community (SPC) Private Mail Bag Suva Fiji

January 2004: 1st Edition January 2011: 2nd Edition April 2017 : 3rd Edition January 2020: 4th Edition January 2023: 5th Edition

© Educational Quality and Assessment Programme, 2023 The Pacific Community (SPC)

Graphics in this book and pictures of the Cover were from IStock.com

All rights reserved. No part of this publication may be reproduced by any means without prior permission of the EQAP Director.

SOUTH PACIFIC FORM SEVEN CERTIFICATE MATHEMATICS with STATISTICS

Contents

1.0 PREAMBLE AND RATIONALE	4
2.0 COURSE AIM	5
3.0 PREREQUISITES	5
4.0 GENERAL OBJECTIVES	5
5.0 CONTENT COMPONENTS	6
6.0 UNPACKING LEARNING OUTCOMES	8
7.0 STRANDS, SUBSTRANDS, AND LEARNING OUTCOMES	9
STRAND 1: PROBABILITY	9
Major Learning Outcome	9
Sub strand 1.1: Probability (EA)	9
Sub strand 1.2: Discrete Probability Distribution (EA)	10
Sub strand 1.3: Probability Distribution (EA)	11
STRAND 2: MODELLING USING GRAPHICAL METHODS	13
Major Learning Outcome	13
Sub strand 2.1: Piecewise Function (EA)	13
Sub strand 2.2: Power & Exponential Functions (EA)	14
Sub strand 2.3: Linear Programming (EA)	15
STRAND 3: STATISTICAL INVESTIGATIONS	16
Major Learning Outcome	16
Sub strand 3.1: Bivariate Data (IA)	16
Sub strand 3.2: Comparing Two Populations (IA)	17
Sub strand 3.3: Statistical Processes (EA)	
STRAND 4: NUMERICAL AND ALGEBRAIC METHODS	19
Major Learning Outcome	19
Sub strand 4.1: Linear Equations (EA)	19
Sub strand 4.2: Non-Linear Equations (EA)	20
8.0 ASSESSMENT	21
8.1 Suggested Teaching Time and Weightings	21
8.2 Assessment Blueprint	21
8.3 Internal Assessment	22

8.3.1 IA Task 1 - Statistical Investigation using Bivariate data	24
8.3.2 IA Task 2 – Statistical Investigation 2 – Comparison Project	
8.4 Scoring Rubrics	27
8.4.1 IA Task 1 Scoring Rubric	27
8.4.2 IA Task 2 Scoring Rubric	
9.0 APPENDICES	
9.1 Appendix 1: Formulas and Tables	
9.2 Appendix 2: Verb Taxonomy	
9.3 Appendix 3: IA Programme Proposal Template	
9.4 Appendix 4: IA Summary Form	40
10.0 ADVISORY SECTION	41
10.1 Recommended Texts & Resources	41
A. Suggested Text	41
B. Supplementary Texts	41
10.2 Sample Teaching Programme	42
10.3 Issues & Recommendations for Assessment Governing Bodies	43

1.0 PREAMBLE AND RATIONALE

The SPFSC Mathematics with Statistics course has undergone a review and realignment. Three main factors that contributed to this review include:

- 1. The need to consider international trends in the teaching of Statistics and the subsequent expectations of universities in the Pacific region and internationally on what statistical understanding students should possess.
- 2. The need to raise student achievement by "doing less, but doing it better", which reflects another international trend in education.
- 3. The influence of changes in technology on the curriculum content.
- 4. The need for constructive alignment between the intentions and results of teaching and learning.

The main changes made to the syllabus include:

- The introduction of the analysis of bivariate data. It is considered that this is an important skill for further study at university across many fields.
- A focus on understanding and using the statistical investigation process in its complete form, as opposed to assessing small parts of it in isolation. This is in alignment with international trends and the need to have students who are more data literate.
- The introduction of three compulsory internal statistical investigations to acknowledge the three different data analysis methods: Bivariate analysis; Time series analysis; and making inferences to compare two populations. Again, this is to help develop more data literate students.
- A focus on using methods to model situations and to solve problems rather than looking at sub-skills in isolation. This is in alignment with international trends.
- The removal of the Calculus Strand to allow time for a more in-depth study of other topics. It was considered that those students who needed Calculus as a future pathway would need to enter the Mathematics in Calculus course anyway.
- The removal of the Time-Series Sub-Strand which can be pursued at higher levels when students go up to University. The content is too heavy for teachers to teach, and the removal of this Sub-strand should allow teachers to invest more time developing students' skills in other strands.
- The removal of the Sequences and Series topic was to allow time for more in-depth study of other topics. It was considered that much of the content was a repetition of what was covered in the national Year 12 syllabus and provided no future pathways for student enrolled in this course.
- The removal of binomial expansions through the use of the Binomial Theorem. It was considered that this aspect was no longer relevant in the context of this course and that a focus on permutations and combinations in the context of Probability was more suitable.
- The removal of approximating probability distributions and the introduction of combining probability distributions instead. With the changes in technology, approximating distributions has less relevance, whereas the ability to deal with more complex probability situations is now seen as being of importance.

• The inclusion of clear learning outcomes at different levels of generality (Major Learning Outcomes, Key Learning Outcomes, Specific Learning Outcomes)

The course content was then reorganised under four specific learning objectives, and assessment weightings were allocated to each objective based on teaching and learning time (including time needed for both formative and summative assessment). This, along with the change of emphasis towards understanding and using the statistical investigation process in its completeness, has led to a change in the internal and external assessment weightings.

2.0 COURSE AIM

The aim for this course is for students to realise the importance of Statistics and Modelling as a means for understanding what is happening in the real world.

3.0 PREREQUISITES

This aligned syllabus defines the requirements for the South Pacific Form Seven Certificate Mathematics (with Statistics) program in terms of unpacked learning outcomes, external examination, and internal assessment requirements.

Students also require knowledge and understanding of outcomes from the national Year 12 Mathematics syllabus, which are related to the specific outcomes of this syllabus.

The course is designed for students who may undertake further studies in a tertiary institution as well as for those students who will complete their formal education at the end of Year 13.

4.0 GENERAL OBJECTIVES

Students will be expected to:

- 1. develop knowledge and skills related to Probability in order to solve problems and to investigate situations involving elements of chance.
- 2. model situations using graphical methods in order to solve problems
- 3. carry out statistical investigations and understand statistical processes.
- 4. use numeric and algebraic methods to solve problems

5.0 CONTENT COMPONENTS

The content of the SPFSC Mathematics with Statistics course is organised under four Strands and a number of Sub-Strands under each Strand. These are outlined below:

STRAND NUMBER	MAJOR LEARNING OUTCOME	SUB STRAND NUMBER	KEY LEARNING OUTCOME
			Probability
	Strand 1: Probability	1.1	Students are able to demonstrate knowledge and critical evaluation of probability problems.
	Students are able to		Discreet Probability Distribution
1.	<i>demonstrate</i> <i>knowledge application</i> <i>and critical evaluation</i> to solve problems and to investigate situations related to Probability	1.2	Students are able to demonstrate knowledge and critical evaluation of problems involving expected values and variance of random variables from a discrete probability distribution.
	involving elements of chance.		Probability Distribution
	chance.	1.3	Students are able to demonstrate knowledge and critical evaluation of using appropriate probability distributions to model a given situation and solve problems
			Piecewise Function
	Strand 2: Modelling using Graphical	2.1	Students are able to demonstrate knowledge and critical evaluation of simple piecewise functions in order to model data.
	Methods	WethodsStudents are able to demonstrate knowledge and critical evaluation of models hat show situations using graphicalPower & Exponential Functions Students are able to demonstrate know application and critical evaluation of models that show real data using po exponential functions in order to sol problems.	Power & Exponential Functions
2.	demonstrate knowledge and critical evaluation of models that show situations using graphical		Students are able to demonstrate knowledge application and critical evaluation of models that show real data using power and exponential functions in order to solve problems.
	methods in order to solve problems.		Linear Programming
	sorre proorents.	2.3	Students are able to demonstrate knowledge application and critical evaluation of situations that model linear programming techniques to obtain optimal solution.
	Strand 3 : Statistical		Bivariate Data
3.	Investigations	3.1	Students are able to demonstrate knowledge application and critical evaluation of

	Students are able to demonstrate knowledge application		statistical processes used to undertake an investigation of bivariate data.
	of statistical. investigations and understand statistical processes 3.2	3.2	Comparing Two Populations Students are able to demonstrate knowledge application and critical evaluation of statistical processes by undertaking an investigation of numerical data in order to make a comparison between two populations.
		3.3	Statistical Processes Students are able to demonstrate knowledge application and critically evaluate questions related to statistical processes.
4.	Strand 4: Numerical and Algebraic Methods Students are able to demonstrate	4.1	Linear Equations Students are able to demonstrate knowledge application and critical evaluation of systems of 3 x 3 linear equations; Interpret solutions to linear systems of equations; Solve problems that can be modelled by systems of linear equations.
	<i>knowledge application</i> <i>and critical evaluation</i> <i>of the use of numeric</i> <i>and algebraic methods</i> <i>to solve problems.</i>	4.2	Non-Linear Equations Students are able to demonstrate knowledge application and critical evaluation of the use of Bisection method or Newton-Raphson or Secant method to solve non-linear equations to a given precision.

6.0 UNPACKING LEARNING OUTCOMES

In this syllabus, Learning Outcomes are stated at three levels of generality: Major Learning Outcomes (MLOs) are stated at the strand level, Key Learning Outcomes (KLOs) are stated at the sub-strand level, and Specific Learning Outcomes (SLOs) are unpacked from the Key Learning Outcomes. Each SLO is generally a combination of a cognitive skill and a specific content component. Each SLO is given a skill level, level 1 - 4, and this skill level results from the categorisation of the cognitive skill that is embedded in the SLO using the SOLO taxonomy¹.

The SOLO taxonomy provides a simple, reliable and robust model for three levels of understanding – surface, deep and conceptual (Biggs and Collis 1982).

At the **Prestructural** level (L0) of understanding, the task is inappropriately attacked, and the student has missed the point or needs help to start. The next two levels, Unistructural and Multistructural are associated with bringing in information (surface understanding). At the **Unistructural** level (L1), one aspect of the task is picked up, and student understanding is disconnected and limited. The jump to the Multistructural level is quantitative. At the **Multistructural** level (L2), several aspects of the task are known but their relationships to each other and the whole are missed. The progression to relational and extended abstract outcomes is qualitative. At the **Relational** level (L3), the aspects are linked and integrated, and contribute to a deeper and more coherent understanding of the whole. At the **Extended Abstract** level (L4), the new understanding at the relational level is re-thought at another conceptual level, looked at in a new way, and used as the basis for prediction, generalisation, reflection, or creation of new understanding (adapted from Hook and Mills 2011). [http://pamhook.com/solo-taxonomy/]

The progression from Level 1 to Level 4 is exemplified in the progression from *define* \rightarrow *describe* \rightarrow *explain* \rightarrow *discuss* with each succeeding level indicating a *higher level of understanding*, as follows:

- **define** to state a basic definition of a concept [Unistructural or L1]
- **describe** to give the characteristics of, or give an account of, or provide annotated diagrams. [Multistructural or L2]
- **explain** to provide a reason for a relationship an event and its impact, a cause and an effect, as to *how* or *why* something occurs. [Relational or L3]
- **discuss** this means *linking ideas* (descriptions, explanations) to make generalisations or predictions or evaluations. It may involve relating, comparing, analysing, and justifying.
- solve/calculate/compute to carry out a series of algorithms to arrive at a solution [Multistructural (L2) or Relational (L3) or even Extended (L4) depending on the complexity of the algorithm]. If there are two 'loadings' in the calculations (a standard problem) then skill level would be L2, if three 'loadings' (a complex problem) then L3 and four loadings (a more complex problem) for L4.

¹ Structure of Observed Learning Outcomes by Biggs and Collis (1982)

7.0 STRANDS, SUBSTRANDS, AND LEARNING OUTCOMES

STRAND 1: PROBABILITY

Major Learning Outcome

Students are able to demonstrate knowledge application and critical evaluation to solve problems and to investigate situations related to Probability involving elements of chance.

Sub strand 1.1: Probability (EA)

Key Learning Outcome

Probability

Students are able to demonstrate knowledge and critical evaluation of probability problems.

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
1.	identify an event in a given context.	1	Sta1.1.1.1
2.	identify a mutually exclusive / complementary / independent / inclusive / conditional event within a context.	1	Sta1.1.1.2
3.	compute probability of an event.	2	Sta1.1.2.1
4.	solve mutually exclusive/ independent /complementary/conditional event problems where probabilities are known.	2	Sta1.1.2.2
5.	solve standard problems using tree diagrams techniques.	2	Sta1.1.2.3
6.	solve simple permutations/combination problems.	2	Sta1.1.2.4
7.	solve standard probability of inclusive events (both conditions are true).	2	Sta1.1.2.5
8.	determine the probability of complements of events.	2	Sta1.1.2.6
9.	solve mutually exclusive /independent/complementary/conditional events problems where probabilities have to be calculated.	3	Sta1.1.3.1
10.	solve complex problems using tree diagrams/Venn diagram techniques.	3	Sta1.1.3.2
11.	solve complex problems using <i>tables of counts</i> and relative frequencies techniques / theoretical and experimental probability techniques.	3	Sta1.1.3.3
12.	solve complex problems using permutations/combinations techniques. e.g. The selection or arrangement of numbers is for a double digit number. (How many 2-digit numbers can be written from 4567 without repeating a number?)	3	Sta1.1.3.4
13.	Calculate probabilities of complementary / mutually exclusive/independent events given as word problems where other probabilities have to be calculated first.	4	Sta1.1.4.1
14.	Calculate probabilities of conditional/combined event given as word problems.	4	Sta1.1.4.2
15.	Calculate probabilities using tree diagrams/Venn diagrams techniques expressed as word problems.	4	Sta1.1.4.3

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
16.	solve more complex problems using permutations/combinations		
	techniques.		
	- The selection or arrangement of numbers is for a three digit	4	Sta1.1.4.4
	number. (How many 3-digit numbers can be written from		
	4567 without repeating a number?)		

Sub strand 1.2: Discrete Probability Distribution (EA)

Key Learning Outcome

Discreet Probability Distribution

Students are able to demonstrate knowledge and critical evaluation of problems involving expected values and variance of random variables from a discrete probability distribution.

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
1.	define random variable within a given context.	1	Sta1.2.1.1
2.	define standard deviation within a given context.	1	Sta1.2.1.2
3.	define probability distribution within a given context.	1	Sta1.2.1.3
4.	calculate the expected value of discrete random variables in a simple problem.	2	Sta1.2.2.1
5.	calculate the standard deviation of discrete random variables in a simple problem.	2	Sta1.2.2.2
6.	calculate the expected value of linear functions of random variables in a simple problem.	2	Sta1.2.2.3
7.	 calculate the variance of linear functions of random variables in a simple problem. Data is already small and sorted, and the mean is already calculated. Can be solved just by substituting values in a formula. σ² = √npq σ² = ∑(x - x̄)²/n-1} where the mean is already given. 	2	Sta1.2.2.4
8.	calculate the expected value of sums of independent random variables in a simple problem.	2	Sta1.2.2.5
9.	calculate the variance of sums of independent random variables in a simple problem.	2	Sta1.2.2.6
10.	calculate and interpret the expected value of discrete random variables in a complex problem.	3	Sta1.2.3.1

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
11.	 calculate and interpret the variance of discrete random variables in a complex problem. The data is arranged and sequenced in a table. Mean is not calculated. If a formula is used, a variable in the formula must be worked out first. σ² = √npq Either p or q is not given σ² = ∑(x - x̄)²/n-1 where the mean needs to be calculated. 	3	Sta1.2.3.2
12.	calculate and interpret the standard deviation of discrete random variables in a complex problem.	3	Sta1.2.3.3
13.	calculate and interpret the variance or standard deviation of discrete random variables given as word problems. - The raw data in the word problem is random from a case-study or adopted from a Report. Needs to be arranged and sequenced in a table. - Then the average \bar{x} must be calculated, - columns must be filled in for $(x - \bar{x})$, $(x - \bar{x})^2$, etc. - before using the formula.	4	Sta1.2.4.1

Explanatory Notes

Note: The random variables could come from both given probability distributions and ones that can be developed from tree diagrams.

Sub strand 1.3: Probability Distribution (EA)

Key Learning Outcome

Probability Distribution

Students are able to demonstrate knowledge and critical evaluation of using appropriate probability distributions to model a given situation and solve problems

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
1.	identify properties of a binomial distribution /Poisson distribution within a given context	1	Sta1.3.1.1
2.	state the properties of a normal distribution within a given context.	1	Sta1.3.1.2
3.	compute parameters [<i>n</i> , <i>p</i>] of a binomial distribution.	2	Sta1.3.2.1
4.	solve problems involving number of events using binomial distribution.	2	Sta1.3.2.2
5.	solve simple problems involving probabilities using binomial distribution. [<i>Includes Probability of ONE event only. Probability can be read from the table or calculated using the formula. (Doesn't involve adding or subtraction of probabilities</i>)	2	Sta1.3.2.3
6.	compute probabilities associated with a Poisson distribution over a fixed time interval.	2	Sta1.3.2.4

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
7.	calculate parameters $[n,\mu,\sigma]$ for a normal distribution.	2	Sta1.3.2.5
8.	compute probabilities associated with standard normal distribution.	2	Sta1.3.2.6
9.	compute probabilities associated with normal distribution. [<i>The</i> probability calculated involves the mean on the normal curve. There is no subtraction/or addition of probabilities on the curve (no less than/ greater than or between). Can involve probably, very probably and almost certainly epochs.]	2	Sta1.3.2.7
10.	calculate probabilities using formulae and tables.	2	Sta1.3.2.8
11.	solve complex problems using binomial distribution. [<i>Probability can be read from the table or calculated using the formula, but it involves adding more than one probability/sum of two - four probabilities.</i>]	3	Sta1.3.3.1
12.	calculate parameter $[\lambda]$ for a complex Poisson distribution.	3	Sta1.3.3.2
13.	solve problems using Poisson distribution over a varying time interval.	3	Sta1.3.3.3
14.	solve complex problems using normal distribution. [The probability (or percentage) calculated is either greater than or less than a value on a normal curve. Expected number is not embedded in the question.]	3	Sta1.3.3.4
15.	solve inverse normal type problems.	3	Sta1.3.3.5
16.	solve problems involving sum and difference of independent normal distribution random variables.	3	Sta1.3.3.6
17.	model problems using binomial distribution. [<i>Use a real-life situation that has a probability that exceeds</i> 50%. All <i>tables for binomial distribution cannot exceed</i> 50% <i>so there has to be an additional load of adding probabilities from the terminal end on the table.</i>]	4	Sta1.3.4.1
18.	model problems in a real-life situation using Poisson distribution over a fixed/varying time interval.	4	Sta1.3.4.2
19.	model problems using normal distribution.[<i>The probability calculated is between two values on the normal curve.</i><i>Expected number is included as part of the question.</i>]	4	Sta1.3.4.3
20.	solve problems involving combined distributions. [<i>Example, a two-step problem requiring first a normal distribution calculation and then a binomial distribution calculation</i>].	4	Sta1.3.4.4

STRAND 2: MODELLING USING GRAPHICAL METHODS

Major Learning Outcome

Students are able to demonstrate knowledge and critical evaluation of models that show situations using graphical methods in order to solve problems.

Sub strand 2.1: Piecewise Function (EA)

Key Learning Outcome

Piecewise Function

Students are able to demonstrate knowledge and critical evaluation of simple piecewise functions in order to model data.

Spe	ecific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
1.	define discontinuous function.	1	Sta2.1.1.1
2.	state properties of a discontinuous function.	1	Sta2.1.1.2
3.	interpret piecewise functions which have components that are linear and quadratic.	2	Sta2.1.2.1
4.	list values from graphs of a piecewise / discontinuous function.	2	Sta2.1.2.2
5.	sketch simple piecewise functions (involving linear functions).	3	Sta2.1.3.1
6.	generate equations from graphs of simple piecewise functions.	3	Sta2.1.3.2
7.	choose values from graphs of piecewise functions (including non- differentiability, discontinuity)	3	Sta2.1.3.3
8.	sketch complex piecewise functions (involving linear and quadratic functions).	4	Sta2.1.4.1
9.	formulate equations from graphs or word problems of complex piecewise functions.	4	Sta2.1.4.2
10.	model real life problems using piecewise functions	4	Sta2.1.4.3

Sub strand 2.2: Power & Exponential Functions (EA)

Key Learning Outcome

Power & Exponential Functions

Students are able to demonstrate knowledge application and critical evaluation of models that show real data using power and exponential functions in order to solve problems.

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
1.	draw graphs of power / exponential functions	1	Sta2.2.1.1
2.	solve simple power/exponential equations.	2	Sta2.2.2.1
3.	use log / natural log to calculate values of unknowns.	2	Sta2.2.2.2
4.	show that variables are related by a power law / exponential law [Level 3 example to be given]	3	Sta2.2.3.1
5.	draw graphs of hyperbolic functions. [Level 2 example to be given]	3	Sta2.2.3.3
6.	use log-log technique to transform variables to relate power functions of the form $y = ax^n$ (where ⁿ is a positive integer) to model simple real data.	3	Sta2.2.3.4
7.	use semi-log technique to transform variables to relate exponential (index) functions of the form $y=am^x$ (where m can be any base) or $y=Ae^{kx}$ to model real data.	3	Sta2.2.3.5
8.	solve standard problems using the models. [Example of a standard problem?]	3	Sta2.2.3.6
9.	Solve problems by considering limitations of the model visually. [Example??]	3	Sta2.2.3.7
10.	apply log-log technique to transform variables to relate power functions of the form $y = ax^n$ (where <i>n</i> is a positive integer) to model complex real data.	4	Sta2.2.4.1
11.	apply semi-log technique to transform variables to relate exponential (index) functions of the form $y = am^{x}$ (where m can be any base) or $y=Ae^{kx}$ to model complex real data.	4	Sta2.2.4.2

For longer periods of time, a different but related equation is used. It is derived from the previous equation by calculus. You are not required to know this derivation.

$$N = N_0 e^{-\lambda t}$$

N – number of atoms remaining; N_0 – original number of atoms. e – the exponential number = 2.718... λ – the decay constant (s-1); t – time (s)

Sub strand 2.3: Linear Programming (EA)

Key Learning Outcome

Linear Programming

Students are able to demonstrate knowledge application and critical evaluation of situations that model linear programming techniques to obtain optimal solution.

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
1.	identify regions that are represented by inequations.	1	sta2.3.1.1
2.	determine the objective function (function that is to be maximised or minimised) from a problem.	2	sta2.3.2.1
3.	show the constraints (the inequations that show the restrictions that must be considered) from a problem (NB: in some cases the constraints may be given).	2	sta2.3.2.2
4.	compute the point where the objective function is maximised or minimised to solve the problem, when the points are obvious or stated.	2	sta2.3.2.3
5.	graph the constraints to obtain the feasible region and shade the region (shading in or shading out).	3	sta2.3.3.1
6.	compute the point where the objective function is maximised or minimised to solve the problem, when three corner points of the feasible region are to be determined first.	3	sta2.3.3.2
7.	determine the inequalities given a feasible region (where the feasible region has three corner points).	3	Sta2.3.3.3
8.	construct the constraints (the system of inequations that show the restrictions that must be considered) from a complex word problem	4	sta2.3.4.1
9.	graph the constraints in a complex problem to obtain the feasible region and shade the region (shading in or shading out).	4	sta2.3.4.2
10.	derive the point where the objective function is maximised or minimised to solve the complex problem, where more than three corner points of the feasible region are to be determined first.	4	sta2.3.4.3

STRAND 3: STATISTICAL INVESTIGATIONS

Major Learning Outcome

Students are able to demonstrate knowledge application and critical evaluation of statistical. investigations and understand statistical processes.

Sub strand 3.1: Bivariate Data (IA)

Key Learning Outcome

Bivariate Data

Students are able to demonstrate knowledge application and critical evaluation of statistical processes used to undertake an investigation of bivariate data.

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
1.	state the properties of the Pearson's correlation coefficient, r.	1	sta3.1.1.1
2.	state a purpose for a statistical investigation.	1	sta3.1.1.2
3.	identify a sampling method appropriate to the purpose of the investigation.	1	sta3.1.1.3
4.	identify the variables of interest for the investigation.	1	Sta3.1.1.4
5.	identify the sources of variation in the investigation.	1	Sta3.1.1.5
6.	describe the methods of managing variations for best results.	2	Sta3.1.2.1
7.	describe the sampling method appropriate for the purpose.	2	sta3.1.2.2
8.	describe the data collection procedure.	2	Sta3.1.2.3
9.	make statements based on simple data shown on graphs.	2	sta3.1.2.4
10.	formulate relationship questions to be investigated.	2	sta3.1.2.5
11.	describe variables of interest from a given data set.	2	sta3.1.2.6
12.	setup data for the investigation.	2	sta3.1.2.7
13.	display collected data in an appropriate format in a recognised data file.	2	sta3.1.2.8
14.	describe the trend/strength of relationship in an investigation.	2	sta3.1.2.9
15.	compile logically, statistical (bivariate) data, results and conclusion.	2	sta3.1.2.10
16.	illustrate collected data as a scatter plot and draw the line of best fit using a recognised statistical tool.	3	sta3.1.3.1
17.	make concluding statements based on the line of best fit.	3	sta3.1.3.2
18.	calculate the Pearson's correlation coefficient, r of a given data set and relate to the data set.	3	sta3.1.3.3
19.	make concluding statements based on a given value of the Pearson's correlation coefficient, r .	2	sta3.1.2.12
20.	calculate the equation of line of best fit and relate to the data set;	3	sta3.1.3.4
21.	discuss trends and strength of relationship with supporting evidence.	4	sta3.1.4.1
22.	formulate conclusions based on the investigative question and supported with evidence.	4	sta3.1.4.2
23.	evaluate the strengths and limitations of the investigation design and/or process.	4	Sta3.1.4.3

Sub strand 3.2: Comparing Two Populations (IA)

Key Learning Outcome

Comparing Two Populations

Students are able to demonstrate knowledge application and critical evaluation of statistical processes by undertaking an investigation of numerical data in order to make a comparison between two populations.

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
1.	define sample or populations to be studied.	1	sta3.2.1.1
2.	identify appropriate sampling method.	1	sta3.2.1.2
3.	identify outliers in the sample/population.	1	sta3.2.1.3
4.	identify the variable of interest of an investigation (planning).	1	sta3.2.1.4
5.	identify the populations to be investigated (planning).	1	sta3.2.1.5
6.	identify methods to manage variations.	1	sta3.2.1.6
7.	state the different methods of sampling.	1	sta3.2.1.7
8.	state a comparison question to be investigated.	1	sta3.2.1.8
9.	describe the sampling method used in the investigation.	2	sta3.2.2.1
10.	plan/describe methods of collecting and recording data.	2	sta3.2.2.2
11.	plan/describe the investigation by identifying the comparison question, variables of interest; the two populations; sources of variation and establishing methods to manage them.	2	sta3.2.2.3
12.	describe sources of variation and establishing methods to manage them (e.g. considering outside variables in data collection methods).	2	sta3.2.2.4
13.	collect data to be investigated and tabulated appropriately in a recognised statistical application.	2	sta3.2.2.5
14.	describe sources of variation on the collected data.	2	sta3.2.2.6
15.	analyse the data by summarizing data with statistical measures, using a recognised statistical application.	3	sta3.2.3.1
16.	draw and label appropriate graphical displays using a recognised statistical application.	3	sta3.2.3.2
17.	reflect on the data patterns and form a hypothesis	3	sta3.2.3.3
18.	explain in simple terms why a given sampling method may be unsatisfactory.	3	Sta3.2.3.4
19.	classify methods to manage variations (e.g. considering outside variables in data collection methods).	3	sta3.2.3.5
20.	develop inferences using confidence interval (difference of two means or proportions).	3	sta3.2.3.6
21.	discuss limitations of the investigation with supporting evidence.	4	sta3.2.4.1
22.	draw conclusions based on the results of the investigation and support with evidence.	4	sta3.2.4.2

Sub strand 3.3: Statistical Processes (EA)

Key Learning Outcome

Statistical Processes

Students are able to demonstrate knowledge application and critically evaluate questions related to statistical processes.

	Specific Learning Outcomes (SLO): Students are able to		SLO code
1.	state the central limit theorem.	1	sta3.3.1.1
2.	compute the margin of error.	2	sta3.3.2.1
3.	compute the sample size (n) using the margin of error.	2	sta3.3.2.2
4.	compute the point estimate of the population mean/population proportion (sample mean).	2	sta3.3.2.3
5.	compute the standard error in a given confidence interval.	2	sta3.3.2.4
6.	express the confidence interval in a statement.	3	sta3.3.3.1
7.	show how the margin of error changes when certain parameters of the population/sample or confidence interval are altered.	3	sta3.3.3.2
8.	apply the central limit theorem to solve problems related to confidence interval.	3	sta3.3.3.3
1.	apply point estimates calculations to solve problems related to confidence interval.	3	sta3.3.3.4
2.	calculate the 90% / 95% / 99% confidence interval for a population mean.	3	sta3.3.3.5
3.	calculate the 90% / 95% / 99% confidence interval for a population proportion.	3	sta3.3.3.6
4.	compare and contrast standard error and margin of error.	3	sta3.3.3.7
5.	express the impact of the size of the confidence interval on the margin of error.	3	sta3.3.3.8
6.	calculate the 90% / 95% / 99% confidence interval for the difference in means.	4	sta3.3.4.1
7.	calculate the 90% / 95% / 99% confidence interval for the difference in proportions.	4	sta3.3.4.2
8.	solve complex word problems related to confidence interval.	4	sta3.3.4.3
9.	predict the effect of the margin of error.	4	sta3.3.4.4
10.	Calculate and interpret confidence interval for population means / proportions / difference in means	4	sta3.3.4.5
11.	evaluate the validity of claims using confidence interval.	4	sta3.3.4.6

Explanatory Notes

Assessment will involve a selection from:

- performing or commenting on aspects of the processes involved in substrands 3.1, 3.2, 3.3
- understanding the central limit theorem
- calculations related to confidence intervals (mean, proportion, difference of mean, difference of proportion) at the 90%, 95% & 99% level of confidence & interpreting these intervals
- understanding point estimates and sample size (n) using the margin of error
- calculating the All relevant formula that students will require for calculations indicated in the table of SLOs above are to be provided in the formula sheet as well as part of items in tests and examinations, where necessary.

STRAND 4: NUMERICAL AND ALGEBRAIC METHODS

Major Learning Outcome

Students are able to demonstrate knowledge application and critical evaluation of the use of numeric and algebraic methods to solve problems.

Sub strand 4.1: Linear Equations (EA)

Key Learning Outcome

Linear Equations

Students are able to demonstrate knowledge application and critical evaluation of systems of 3 x 3 linear equations; Interpret solutions to linear systems of equations; Solve problems that can be modelled by systems of linear equations.

	Specific Learning Outcomes (SLO): Students are able to	Skill level	SLO code
1.	state the different types of solutions in solving linear equations.	1	sta4.1.1.1
2.	write linear systems of equations for a given basic situation.	2	sta4.1.2.1
3.	solve simple linear systems of equations for a given situation by elimination/substitution/graphing method.	2	sta4.1.2.2
4.	describe the nature of solutions of a linear system of equations.	2	sta4.1.2.3
5.	determine the condition for infinitely many solutions to a given set of equations.	2	sta4.1.2.4
6.	solve linear systems of equations (use of matrices is accepted).	3	sta4.1.3.1
7.	write linear systems of equations for a given complex situation, involving three equations in three variables.	3	sta4.1.3.2
8.	solve application word problems by elimination /substitution / graphing method.	3	sta4.1.3.3
9.	interpret the nature of solutions of linear system of equation with description.	3	sta4.1.3.4
10.	solve 3 x 3 linear system of equation based on real life situations using algebraic method or matrices where three equations are given.	4	sta4.1.4.1

Explanatory Notes

Assessment will focus on using simultaneous equations to solve problems in context:

- ▶ solving 3x3 linear systems of equations (use of matrices is accepted).
- > forming linear systems of equations for a given situation and solving them in context.
- > determining and interpreting the nature of solutions, including
- Unique or dependent solutions
- \succ No solution
- Geometric interpretations

Sub strand 4.2: Non-Linear Equations (EA)

Key Learning Outcome

Non-Linear Equations

Students are able to demonstrate knowledge application and critical evaluation of the use of Bisection method or Newton-Raphson or Secant method to solve non-linear equations to a given precision.

	Specific Learning Outcomes (SLO): Students are able to		SLO code
1.	state the advantage or disadvantage of using the Newton-Raphson/Bisection method.	1	sta4.2.1.1
2.	determine the presence of roots of a hyperbolic function between two x values.	2	sta4.2.2.1
3.	determine the nature of the roots after using the Newton-Raphson to improve the approximation to a given precision.	2	sta4.2.2.2
4.	differentiate power functions in order to use the Newton-Raphson Method.	3	sta4.2.3.1
5.	use the Newton-Raphson/Bisection/Secant method to solve the equation $f(x)$.	3	sta4.2.3.2
6.	solve a non-linear equation using the Newton-Raphson / Bisection / Secant method with a given starting value.	4	sta4.2.4.1
7.	apply a suitable method to find an approximate solution to a non- linear equation.	4	sta4.2.4.2

Explanatory Notes

Assessment will focus on:

- use of the Newton-Raphson or the Bisection Method or Secant Method (or any two of the three) to improve the approximation to a given precision.
- differentiate simple power functions in order to use the Newton-Raphson Method (this involves derivatives of polynomials only. If needed, derivatives of other functions will be given)
- *NB:* Students will be expected to be familiar with all the three methods (Newton-Raphson, bisection and Secant methods.)

The starting values will be provided.

8.0 ASSESSMENT

Assessment in this Mathematics with Statistics course is in two parts - External Assessment and Internal Assessment. The respective weightings are

- 1. External Assessment (EA): 60%
- 2. Internal Assessment (IA) : 40%

The Principal, or his/her nominee, will certify that the syllabus requirements have been fulfilled.

8.1 Suggested Teaching Time and Weightings

STRAND	EXTERNAL / INTERNAL ASSESSMENT	SUGGESTED TIME ALLOCATION	APPROXIMATE WEIGHTING
1. Strand 1: Probability	External	8 weeks	20 %
2. Strand 2: Modelling Using Graphical Methods	External	5 weeks	17 %
3. Strand 3: Statistical Investigations	External & Internal	12 weeks (4 weeks external / 8 weeks internal)	50 % (10% external / 40% internal)
4. Strand 4: Numerical and Algebraic Methods	External	3 weeks	13 %
Total		28 weeks	100%

8.2 Assessment Blueprint

	Assessment	SKILL LEVEL/ SCORE				
Strand	Туре	1	2	3	4	Weight
1. Probability	EA					20
2. Modelling using graphical methods	EA					17
	EA					10
3. Statistical investigations	IA	2	2	2	2	20
	IA	2	2	2	2	20
4. Numerical and algebraic methods	EA					13
Total number of items		10	10	10	10	100
Total skill score		10	20	30	40	100

The External Examination will be a **three-hour** written examination and will be out of **60%**. The paper will assess a selection of learning outcomes from all four Strands in the following proportions:

Strand		Total score per section	Suggested Exam Time
1	Probability	20	60 mins
2	Modelling using graphical methods	17	50 mins
3	Statistical investigations	10	30 mins
4	Numerical and algebraic methods	13	40 mins

Learning outcomes that are assessed using Internal Assessment will not be assessed in the External Assessment.

Students would be expected to know, understand, and apply any mathematical skill related to the outcomes. Examination questions, which require specific mathematical knowledge, will be based on the outcomes. However, students can be assessed the same learning outcomes using an unfamiliar context to assess students' application of the mathematical concepts in the real world context.

Emphasis or the number of questions in the examination will reflect the teaching time and weightings allocated to each topic.

A standard list of formulae will be incorporated in the examination paper. Additional formulae may be provided where appropriate. A copy of the formulae list is attached as Appendix 1 in this syllabus.

The use of calculators and computers is an integral part of mathematics. Students will be required to supply their own calculators for use in the examination. The use of calculators during the examination must conform to the EQAP Rules and Procedures governing electronic calculators.

8.3 Internal Assessment

There are two internal assessment tasks, and these include:

Task 1: Statistical Investigations - **Bivariate Project**(20%)

Task 2: Statistical Investigations - Comparison Project (20%)

These assessments will complement the written examination. They emphasize those specific outcomes in the syllabus for which assessment by an External Examination is less appropriate, e.g. carrying out statistical investigations.

To meet the internally assessed component requirement, students will carry out two tasks and then submit two pieces of written or word-processed work, reporting on the statistical investigations undertaken. The two investigations to be carried out are briefly described below.

At the beginning of each year, each school presenting students for the South Pacific Form Seven Certificate Mathematics (with Statistics) assessment must complete an Internal Assessment programme proposal and forward to EQAP by the date set down by the Director. The form must clearly indicate the time (start and completion date) each investigation is intended to be undertaken. The Internal Assessment Programme Proposal template is provided as Appendix 3. Teachers are advised to fill in all the required details based on information provided in the syllabus as well as those from their schools and submit the proposal to EQAP by the stipulated due date. Failure of a school to submit an acceptable IA programme proposal will result in possible disqualification of the IA program for that school.

Students should be given ample notification about an Internal Assessment task and ample time to complete the task. It is recommended that students be provided with the scoring rubrics for each task so that they are fully informed of the criteria against which their task responses will be assessed. A sample of candidate responses to all internal assessment tasks undertaken must be available for verification on request until 30 November of the year of the examination.

The moderation of Internal Assessment will be done in accordance with EQAP policy as specified from time to time.

The assessment/scoring schedules for the two IA tasks are included in the next section.

Using statistical tools

The use of an Excel spreadsheet in the investigations to calculate simple factors like the median, mean, standard deviation and variance and for drawing graphs is an expectation for both Tasks 1 and 2. Students are also encouraged to use other statistical packages that may be available to them.

Instruction to Students:		
The	investigation will involve bivariate numerical data:	
	Develop an investigation topic and research question or questions and verify with the teacher Students are to choose one topic from the list below.	
	Students that chose the same topic can work together however, each student is to submit his or her own report.	
	1: Relationship between student scores in English and Mathematics in Year 12 examination	
	2: Relationship between student scores in English and History in Year 12 examination	
	3: Relationship between student scores in Physics and Mathematics in Year 12 examination	
1	4: Relationship between student scores in Accounting and Mathematics in Year 12 examination	
	5: Relationship between student scores in Accounting and Economics in Year 12 examination	
	6: Relationship between student scores in Geography and History in Year 12 examination	
	7: Relationship between height and weight of students in a class	
	8. Relationship of the absentee rate between boys and girls in a class.	
	Planning the investigation: based on the relationship questions agreed with the teacher, students are to:	
	 identify the population identify the variables to be investigated 	
2	 identify the sources of variation 	
4	 state a null hypothesis for the relationship 	
	 describe methods of managing variation 	
	• identify an appropriate sampling method	
	• outline the data collection and recording procedure according to the plan	
3	Gathering the data	

	 collect and record data Note: It is expected that students record data in an Excel file or any other recognised statistical application.
4	 Analysing the data plot data as a scatter plot draw a line of best fit (either using technology or using the method of two medians) determine the equation of the line of best fit and relate this to the data set. calculate the Pearson's correlation coefficient, r (NB: if students do not have access to computer technology, teachers may need to consider restricting the amount of data that is to be analysed) <i>Note: It is expected that students use the functions in Excel or any other recognised statistical application/tool to carry out calculations and draw graphs.</i>
5	 Developing a conclusion interpret the trend discuss the strength of the relationship (correlation) discuss whether the null hypothesis has been proven true or not write a conclusion summarising the finding (this should answer the investigative question) discuss the strength of the research. discuss limitations of the research
6	Write a report on the above.
7	Refer to the scoring rubric when writing the report.

8.3.2 IA Task 2 – Statistical Investigation 2 – Comparison Project

Instruction to Students:			
The	The investigation will involve:		
1	Posing a comparison question to be investigated		
2	 Planning the investigation identify the two populations identify the variable of interest identify sources of variation Describe methods to manage variation (e.g. considering outside variables in data collection method) choose a sampling method plan methods of collecting and recording data 		
3	 Gathering the data collect and record data manage & sort data clean data (removal of outliers) Note that it is expected that students use Excel or any other recognised statistical application for recording and sorting data 		
4	 Analysing the data summarise data with statistical measures draw appropriate displays reflect on the distribution formulate a hypothesis Note that Note: It is expected that students use the functions in Excel or any other recognised statistical application/tool to carry out calculations and draw graphs. 		
5	 Developing a conclusion interpret data make inferences using confidence interval (difference of two means or proportions). relate the findings to the hypothesis write a conclusion to answer the investigative question discuss limitations 		
6	Write a Report on the above.		
7	Refer to the scoring rubric when writing the Report		

8.4 Scoring Rubrics

8.4.1 IA Task 1 Scoring Rubric

		EL			STUDENT RESPO	NSE LEVEL	
ITEM #	SLO CODE	SKILL LEV	EVIDENCE	Level 1	Level 2	Level 3	Level 4
1 a	sta3.1.1.2	1	Purpose stated	Purpose of investigation cleary stated.			
1 b	Sta3.1.1.4	1	Variables of interest are identified	At least one variable identified			
1c	Sta3.1.2.2	2	Sampling procedure is described	Procedure is partialycorrect	Procedure is fully correct.		
1d	sta3.1.2.7	2	Data combined	Data collected but not clearly recorded	Combined Data, clearly recorded and cleaned (outliers removed)		
1e	sta3.1.2.8	2	Collected data displayed in an appropriate form	Data collected but not clearly recorded in an appropriate form Statistical tool is used	Combined Data displayed and recorded appropriately Statistical tool is used		
1f	sta3.1.3.1	3	Illustration of Scatter plot is clear, and appropriate with line of best fit drawn	Scatter plot partially correct with no line of best fit or incorrect line of best fit. Statistical tool is used	Scatter plot fully correct with no line or partially correct line of best fit Statistical tool is used	Scatter plot, and appropriate line of best fit are correct and labelled Statistical tool is used	

			Equation of the line of	Equation of line of best fit	Equation of line of best fit is correctly	Equation of line of best fit	
1g	Sta3.1.3.4	3	the best fit is determined and related to the data set	is partially correct Statistical tool is used	determined with no relation to the data set Statistical tool is used	and related appropriately to the data set. Statistical tool is used	
Ih	Sta3.1.3.3	3	Pearson's correlation coefficient is calculated and related to the data set Statistical tool is used	Evidence of some calculations shown with incorrect correlation coefficient Statistical tool is used	Correlation coefficient is correct with no relation to the data set Statistical tool is used	Correlation coefficient is correct with relation to the data set Statistical tool is used	
11	sta3.1.4.2	4	Clear conclusion supported with evidence.	Incorrect conclusion	Partially correct conclusion with no evidence	Correct conclusion with incorrect evidence	Clear conclusion, with correct evidence in context
1j	Sta3.1.4.3	4	Strengths and limitations of the investigation design and/or process evaluated	Either strength or limitations identified	Both strength and limitations identified	Both strength and limitations identified and either one of it is evaluated	Both strength and limitations identified and evaluated

8.4.2 IA Task 2 Scoring Rubric

COMPARISON PROJECT (20%)

	Ъ	/EL		S	TUDENT RES	PONSE LEVE	L
ITEM #	SLO CODI	SKILL LEV	EVIDENCE	Level 1	Level 2	Level 3	Level 4
3a	sta3.2.1.8	1	Comparison question clearly stated	Question clearly stated			
3b	Sta3.2.1.5	1	The two populations under study are named	Populations are named correctly			
3с	sta3.2.2.2	2	Methods of collecting and recording data cleary stated	Either one clearly stated (methods of collecting or recording).	Both method of collecting and recording data clearly stated.		
3d	sta3.2.2.1	2	Sampling method clearly described	Sampling method identified.	Sampling method clearly described clearly.,.		
3e	sta3.2.2.5	2	Data collected, clearly recorded and cleaned where appropriate.	Data collected but not clearly recorded or cleaned. Statistical tool (e.g. Excel) is used for recording data	Data collected, recorded and cleaned. Statistical tool (e.g. Excel) is used for recording data		

	[7]	'EL		S	TUDENT RES	PONSE LEVE	L
ITEM #	SLO CODI	SKILL LEV	EVIDENCE	Level 1	Level 2	Level 3	Level 4
3f	Sta3.2.3.1	3	Summary of data with appropriate measures of central tendency and spread;	An appropriate measure of central tendency or an appropriate measure of spread is povided. Statistical tool (e.g. Excel) is used for data analysis.	Two or more measures are provided correctly; Statistical tool (e.g. Excel) is used for data analysis.	Two or more measures are provided and related appropriately to the data set and the investigation purpose. Statistical tool (e.g. Excel) is used for data analysis.	
3£	sta3.2.3.2	3	Appropriate display/s provided and labelled	Presented data through an appropriate display, but very limited. Statistical tool (e.g. Excel) is used for graphing.	An appropriate display is provided and labelled but with some minor mistakes or ommisions. Statistical tool (e.g. Excel) is used for graphing.	Appropriate display is fully provided and and correctly labelled. Statistical tool (e.g. Excel) is used for graphing.	
	sta3.2.3.6	3	Develop inferences using confidence interval (difference of two means or proportions).	State or shows evidence: - confidence interval formula -% error -one mean	Able to describe one terminal end of the confidence interval.either LHS/RHS	Explain the CI inferences by developing the correct error which is added to the right & subtracted on the left.	

	E	/EL		S	TUDENT RES	PONSE LEVE	L
ITEM #	SLO CODI	SKILL LEV	EVIDENCE	Level 1	Level 2	Level 3	Level 4
3h	sta3.2.4.2	4	Clear conclusion that answers the investigative question, making a clear and justified inference back in the population.	A concluding statement is given without any justification	At least one concluding statement is provided with two unrelated ideas.	Concluding statements are provided that had appropriate ideas that are related well.	Clear conclusion that answers the investigative question, making a clear and justified inference back in the population.
3i	Sta3.2.4.1	4	Discussion of limitations in their data study, and discussing any possible further investigation that the data may have highlighted.	One limitation stated	States two or more limitations or describe a limitation, using two or more ideas.	Explains why the limitation influences the results.	The limitation is discussed in relation to possible further investigation that the data may have highlighted.

9.0 APPENDICES

9.1 Appendix 1: Formulas and Tables

Probability	Expe	ctation Algebra				Stan	dard	Nor	nal D	Istrib	outio	-								
$P(A \cup B) = P(A) + P(B)$ $P(A B) = \frac{P(A \cap B)}{m(B)}$	$P(A \cap B)$ $E(aX + Var(a))$ Var(a) $E(aX + E(aX + C))$	$b = aE(X) + b$ $X + b = a^{2}Var(X)$ $b = a^{2}Var(X)$ $bY' = aE(X) + bE(Y)$					1	Ea.	σ ch en mal r	ny giv	ves t∱ m vai	ie pro iable	z lik	as be	hat t etwe	the s	stan and	dard d z.	pesi	
(g) J	Var(a)	$X + bY$) = $a^2 Var(X) + b^2 Var(Y)$,	[-	2									Differ	rence	38		ľ	
Mean and Variance of	Data	(if X, Y are independent)	ы	0	-	6			6	2	90	6	-	3	4	8	-	~		
$\overline{x} = \frac{\Sigma_{fx}}{n} \qquad s^2 = \frac{\Sigma_{f}}{n}$	$\frac{1}{x^2} - \frac{(\Sigma_{fx})^2}{n}$		0.0 0.1 0.2 0.3 0.4	0000 0398 0793 0793 1179	0040 .0 0438 .0 0432 .0 0832 .0 1217 .1 1591 .1	050 .0 478 .0 871 .0 255 .1 628 .1	20 00 212 00 201 00 203 11 203 11	60 01 57 05 48 05 01 11 00 17	99 .02 96 .06 87 .10 68 .14 68 .14	39 02 36 06 36 10 26 10	79 .03 75 .07 75 .07 75 .18 86 .18	19.033 14.073 30.151 80.151 44.187	4 4 4 4 4	8 12 8 12 8 12 8 11 7 11	14 15 16	202191	28 2 28	33 32 32	66040	
Mean and Variance of	a Random Variable		0.5	1915	1950 .1	985 24	019 20 357 23	222	88 21	22 24	57 .21	8 254	9 9 9	7 10	13	17 21	28	27 3	- 9	
$\mu = E(X) \qquad \sigma$	$^{2} = \operatorname{Var}(X)$		0.7 0.8 0.9	2580	2612 2 2910 2 3186 3	642 29 939 29 212 30	57 F	200 F	34 27 23 30 39 33	222	8 F F	23 738 96 313 82 338	0 0 0 0 0 0	0 0 0 0 0 0	822	2 2 2	8 21 5 18	222	C 10 10	
$= 2\pi P(X = x)$	$\int (x) dx = \int \frac{1}{2} x ^2 dx$		1.0	3413	3438 .3	461 34	185 31 708 31	2E 80	31 35	26 35	77 .35 90 .38	99 362 10 383	83	N 4 N 9	0 00	12 15	2 16	16 1		
Distribution of Sample	e Statistics		202	3849 4032 4192	3869 .3 1049 .4 1207 .4	888 .3 066 4 5 222 4 4	207 30 236 45	51 45 35 51 45 35 51 45 35	44 .39 15 .41 65 .42	2 4 3 3 4 3 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5	80 39 57 41 92 43	97 401 82 417 96 431	976	400	001	8 16	1011	131	040	
Statistic	Mean	Standard Deviation	51	4332	1345 .4	357 4	570 40	182 .43 195 .45	94 .44	06 .44 15 .45	18 .44	29 .444	= = =	46	5 4		90 F	101	- 0	
Sample Mean	$E(\overline{X}) = \mu$	$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$ (std. error of the mean)	1.8	4641 4513	1264 4	14 4 4 929 12 6 6 6 6	88.85	444	6884	888	444	2285	2282	14	r m m m	াৰ কল	- 6 4 4	01-1019	1 25 10 10	
Sample Proportion	$E(P) = \pi$	$\sigma_{\rm P} = \sqrt{\frac{\pi(1-\pi)}{n}} (\text{std. error of} \\ \text{the proportion})$	23	4821 4821 4861 4893	4778 4 1826 4 1864 4 1896 4	783 4 858 4 868 4 898 4	788 4 834 48 871 48 871 48	6 8 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	98 48 42 48 78 48 06 49	8486	86 48 11 48 48 12 48 48	54 483 54 483 51 489 53 489 53 489 53 489 53 489 53 489 54 55 54 55 55 54 55 55 55 55 55 55 55 55 55 55 55 55 55	0000		~ ~ ~ ~	~~~	0000	***	ৰৰণেও	
Difference of Means (of two independent samples)	$\mathbb{E}\left(\overline{X}_1 - \overline{X}_2\right) = \mu_1 - \mu_2$	$\sigma_{\overline{X}_1} - \overline{X}_2 = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	5 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4918 4938 4965 4965	4920 4 4940 4 4955 4 4966 4	922 4 941 4 956 4 967 4	22 F3	2 2 2 2 2 2	64 99 64 99	8 8 5 5 8 8 5 5 6 9 9	8 8 8 8 8	26 76 76 76 76 76 76 76 76 76 76 76 76 76	2442 8	0 0000		00		~ 0	N	
			29	1867	4 282	982 4	983 - 46	999 9 599 9	84,49	8 9 9 8 92 9	8 9 9		200	000	000	000	000			
Confidence Intervals Mean $\overline{X} - z \cdot \sigma_{\overline{X}} < \mu < z$	$\frac{X}{2}$ ω $\frac{1}{2} + \frac{1}{2}$		0.0.0	4993	4 1664 4 1664 4 2664 4 2664	999 994 44 996 996 996 996 996 996 996 9	8 6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	866888 86888 89888	8 6 7 9 9 8 7 9 9 8 9 9 9 9	8 8 8 8 8 8 8 8 8 8 8 8 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	8 C S 8 8 6 6 6 6 9	20000		00000	00000				
Proportion $P - z.\sigma_P <$	$\pi < P + z, \sigma_P$		3.5	4998	4 8664	4 869	998 4	98 45 99 45	98 49	- 6 6	86 F0	86 496 96 496	2 2 2	000	00	00	000		000	
Difference of two means	$\left(\overline{X}_1 - \overline{X}_2\right) - \overline{z} \cdot \sigma_{\overline{X}_1 - \overline{X}_2} < \mu_1$	$-\mu_2 < \left(\overline{X}_1 - \overline{X}_2\right) + z. \sigma_{\overline{X}_1 - \overline{X}_2}$	3.7 3.8 3.9	4999	4 999 4 4999 4	4 666 4 666 5 000 5	999 4 999 4 900 5	99 45 99 45 00 56	99 49 99 49 00 50	66 8 8 6 9 9 9	99 79 90 50	90 - 500	222	000	000	000	000	000	000	

6

T	_							_											
$() = \frac{\lambda^{x}e}{x}$ $\sigma = 0$	1.0	0.3679 0.3679 0.1839 0.0613 0.0613	00005	20	0.1353 0.2707 0.2707	0.0902	0.0120 0.00034 0.0003 0.0003 0.0002	97	0.0183 0.0733 0.1465	0.1954	0.1563 0.1042 0.0595 0.0298	0.0053	0.00019 0.0002 0.0002 0.0002	6.0	0.0025 0.0149 0.0446 0.0892 0.1119	0.1606 0.1606 0.1377 0.1377	0.00413 0.00413 0.00525 0.0052	10000 600000	
(X = x, := λ,	0.9	0.4066 0.3659 0.1647 0.0494 0.0111	0.00030	1.9	0.1496 0.2842 0.2700	0.0812	0.0008	3.8	0.0224 0.0850 0.1615	0.1944	0.1477 0.0936 0.0508 0.0508 0.0241	0.0039	0.0013 0.0004 0.0004	5.8	000000000000000000000000000000000000000	0.1656 0.1326 0.0962	0.0059	0.0001	
A A	0.8	0.4493 0.3595 0.1438 0.0383 0.0077	0.0012	1.8	0.1653 0.2975 0.2678	0.0723	800000 800000 8000000	3.6	0.0273	0.2125	0.1377 0.0826 0.0425 0.0191	0.0000	00000	5.6	0.0037 0.0207 0.0530 0.1082 0.1515	0.1697 0.1584 0.1267 0.0887	0.0000	10000	
ue x.	0.7	0.4966 0.3476 0.1217 0.0284 0.0050	0.0001	1.7	0.1827 0.3106 0.2640	90900	0,00015	3.4	0.1135	0.2186	0.1264 0.0716 0.0748 0.0148 0.0148	0.0019	0.0005	5.4	0.0045 0.00594 0.00599 0.1185 0.1185	0.1728 0.1555 0.15555 0.1200	0.0028	00000	
sson he val	9.0	0.5488 0.3293 0.0988 0.0198 0.0030	0.0004	1.6	0.2019 0.3230 0.2584	0.0551	0.0047	3.2	0.0408 0.1304 0.2087	0.1781	0.1140 0.0608 0.0111 0.0278 0.0111	010013	0.0004	61	0.0055 0.0287 0.0746 0.1293 0.1293	0.1748 0.1515 0.1125 0.0731	0.0018	00000	
Distrit a Pois , has t	0.5	0.0005	0.0002	1.5	1233	12100	10000	3.0	01494	011680	0.0081 0.0216 0.0216	10000	00000	5.0	0.0067	0.1755	0013	0000	
sson I ty that heter <i>λ</i>	0.4	0.0072 0.0072 0.0072 0.0072	10001	1.4	12466	56600	90001 90001	2.8	1,1703	11557	10407	0000	10001	48	1.0082 0.0395 0.0348 0.1517 0.1517	11398	100000	10001	
Poi obabili param	0.3	00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 0003	9	1.3	2725	0324 0	1000	2.6	0743 01931 0	1414 0	0118 0038 0038	00000	0001	4.6	0101 00002 00002 00000	0869	6100 6100 6100 6100 6100 6100 6100 6100	0.0001 0	
the pri X, with	0.2	0011000110000110000110000110000110000110000		1.2	3012 0	0260	0012	2.4	2177 0	2090	0083	0002 0	0	4,4	0123 005400 005400 005400 005400 005400 005400 005400 005400 005400000000	0428	00037 00000 00000 00000 00000 000000 000000 0000	court of 0 1 entries <	
gives riable	0.1	00045		1.1	1962	00200	8000	2.2	U1108 0 02438 0 02681 0	u1966 0 u1082 0	00476 00055 000055 000055 000055 000055 000055 000055 000055 000055 000055 000055 000055 000000	0 1000		42	0150 00630 0000000000000000000000000000000	00686 000000000000000000000000000000000		(all other	
n entry om va	7	0000		~/	0000			17	000	00	00000			~/	00000	00000	00000	2	
Eacl	/*	O HOMA	41 G (*	/*	0=14	9 M M		/*	0=6	ल च	41 107 1- 000	~ g	2223	/	0=004	- 45 10 17 00 1	* 2222;	1 225	
	_	1																	
- L - L	0.5	0.2500 0.3750 0.2500 0.2500	0.1563	03125	0.0313	0.0938	0.2344 0.0938 0.0156	0.0078	0.1641 0.2734 0.2734	0.1641	0.0039	0.2188	0.2188 0.1094 0.0313 0.00313	0.0020	0.0176	0.0176	0.0010 0.0098 0.0435 0.1172 0.1172	0.2461	010010
$(1 - \pi)^n$ $(n\pi(1 - \pi)^n)$	0.45	0.2995 0.2995 0.2675 0.2005 0.0410	0.000	0.2757	0.0185	0.1359	0.1861 0.0609 0.0083	0.0152 0.0872	0.2140 0.2918 0.2388	0.0320	0.00848	0.2568	0.1719 0.0703 0.0164	0.0046	0.01110 0.1110 0.2600	0.1160 0.1160 0.0407 0.0083 0.0008	0.0025 0.0763 0.1665 0.1665	0.1596 0.1596 0.0746 0.0729	24000
$\sigma = \frac{\pi}{\sigma}$	0.4	0.1296 0.3456 0.3456 0.1536 0.1536	0.2592	0.2302	0.0102	0.1866 0.3110 0.2765	0.1382 0.0369 0.0041	0.0280 0.1306	0.25035 0.25035 0.19355	0.0172	0.00695.0	0.2787	0.0239 0.0413 0.0079 0.0079	0.0101	0.1612 0.1612 0.2508 0.2508	0.0743	0.0060 0.0403 0.1209 0.2150 0.2150	0.2007	0.0010
= x) = (x, x)	0.35	0.1785 0.3845 0.3105 0.1115 0.0150	0.1160	0.1811	0.0053	0.2437 0.3280	0.0951	0.0490 0.1848	0.2985 0.2679 0.1442	0.0466	0.0319 0.1373 0.2587	0.2786	0.0808 0.0217 0.0033 0.0002	0.0207	0.1004 0.2162 0.2716 0.2194	0.00134	0.0135 0.0725 0.2522 0.2522	0.1536 0.0689 0.0043	C000/0
$P(X : \mu = n$	11	0.1975 0.3951 0.2963 0.0988 0.0123	0.1317 0.3292	0.1646	0.0041	0.3292 0.3292 0.2195	0.0823 0.0165 0.0014	0.0585	0.3073 0.2561 0.1280	0.0384	0.0390 0.1561 0.1561 0.2731	0.2731	0.0683 0.0171 0.0024 0.0024	0.0260	0.1171 0.2341 0.2048 0.2048	0.0001341	0.0173 0.0867 0.1951 0.2601 0.2276	0.1366 0.0569 0.0163 0.0163	00000
u 🖻	0.3	0.2401 0.4116 0.2546 0.0756 0.0055	0.1681 0.3602	0.1323	0.0024	0.3025 0.3241 0.1852	0.0595 0.0102 0.0007	0.0824 0.2471	0.2269 0.0972	0.00250	0.0576 0.1977 0.2965	0.2541	0.0467 0.0100 0.0012 0.0012 0.0012	0.0404	0.1536 0.2668 0.2668 0.1715	0.0019	0.0282 0.1211 0.2335 0.2668 0.2668	0.1029 0.0368 0.00568 0.00568 0.0014	1000
inomia	0.25	0.4219 0.4219 0.2109 0.0469 0.0039	0.2373 0.3955	0.0879	0.0010	0.2560 0.2966 0.1318	0.0330 0.0044 0.0002	0.1335 0.3115	0.0115 0.0770 0.0577	0.0015	0.1001	0.2076	0.00231 0.0028 0.0004	0.0751	0.2253 0.3003 0.2336 0.1168 0.1168	0.0012	0.0563 0.1877 0.1877 0.1877 0.1877 0.1877 0.1877 0.1877 0.1877	0.0584 0.0162 0.0031 0.0004	
lal Dis hat a b neters	0.2	$\begin{array}{c} 0.4096 \\ 0.4096 \\ 0.1536 \\ 0.0256 \\ 0.0016 \end{array}$	0.3277 0.4096	0.0064	0.0003	0.3932 0.2458 0.0819	0.0154 0.0015 0.00015 0.0001	0.2697	0.1147 0.0287 0.0287	0.0043	0.1678 0.3355 0.2936	0.1468	0.0092 0.0011 0.0001	0.1342	0.3020 0.3020 0.1762 0.0661	0.0028	0.1074 0.2684 0.3020 0.3020 0.0013 0.00813	$\begin{array}{c} 0.0264 \\ 0.0055 \\ 0.0008 \\ 0.0008 \\ 0.0001 \end{array}$	
bility ti bility ti	11	0.0008	0.4019	0.0322	0.0001	0.4019 0.2009 0.0536	0.0080	0.2791	0.2344 0.0781 0.0156	0.0019	0.2326 0.3721 0.2605	0.1042	0.0042	0.1938	0.3489 0.2791 0.1302 0.0391	0.00010	0.1615 0.3230 0.2907 0.1550 0.1550	0.0130 0.0022 0.00022 0.00022	_
E proba	0.15	0.5220 0.3685 0.3685 0.3685 0.3685 0.3685 0.3685 0.3685 0.0075	0.4437 0.3915	0.00244	0.3771	0.3993 0.1762 0.0415	0.0004	0.3206	0.01097 0.01097 0.01099	0.0012	0.2725 0.3847 0.2376	0.0839	0.0026	0.2316	0.3679 0.2597 0.1069 0.0283	0.0006	0.1969 0.3474 0.2759 0.1298 0.1298	0.0085 0.0012 0.0001	< 0.0001
es the le X, v le valu	0.1	0.6561 0.2916 0.0486 0.0036 0.0001	0.5905	180000	0.5314	0.3543 0.0984 0.0146	0.0012	0.4783	0.1240	0.0002	0.4305 0.3826 0.1488	0.0046	0.004	0.3874	0.1722 0.01446 0.0074	100070	0.3487 0.3874 0.1937 0.0574 0.0112	0.0015	er entries
ntry giv variab	0.05	0.8145 0.1715 0.0135 0.0005	0.7738	0.0011	0.7351	0.2321 0.0305 0.0021	0000	0.6983	0.0000		0.6634 0.2793 0.0515	0.0054		0.6302	0.2985 0.0629 0.0077 0.0006		0.5987 0.3151 0.0746 0.0105 0.00105	0.0001	(all oth
ach er andom and π,	N X	0=00.4	0-0	947) 12	5 0 9	-05	- 4 10.00	01	nam at	nor	0-0	en 4	1010 h-00	0 6	⇒ramat a	00000	0-004	V3 V0 IN 08 0	~ <u>2</u>
Ш С с		1		_	-												~		

Pacific Community Communauté du Pacifique

9.2 Appendix 2: Verb Taxonomy

BLOOMS TAXONOMY	SOLO TAXONOMY	SKILL LEVEL SCORE	DESCRIPTORS
Knowledge	 Unistructural students make simple and obvious connections between pieces of information 	1	Mastery of the basic knowledge and skills that
Comprohension	 Multistructural a number of connections are made, but not the meta connections between them 	2	are fundamental for proficient work.
Comprenension	Relational • students see the significance of how the various		Solid academic performance for the given learning outcome and competency over
Application	pieces of information relate to one another	3	challenging subject matter including subject- matter knowledge, application of such knowledge to real world situations.
Synthesis, Analysis, Evaluation	 Extended Abstract at this level students can make connections beyond the scope of the problem or question, to generalise or transfer learning into a new situation 	4	Presumes mastery of both the Basic and Proficient levels and represents superior academic performance.

9.3 Appendix 3: IA Programme Proposal Template

Page 1 : Cover Page

The Cover Page will have the name of the:

- School
- Subject : FULL IA PROGRAM
- Teachers Name:

An Example of a Cover Page

Page 2 : IA SUMMARY FORM

The IA Summary Form must have the following:

- Number of Tasks
- Brief Description of the Tasks
- Start and End Dates
- Signature of Principal and Teacher
- School Stamp/Date

An Example of an IA Summary Form

Page 3 - 6 :

1 Task Title: Task 1:_

The title should be brief and include a reference to the particular syllabus topic or skill which is being assessed by the task.

Example: "Research Topic – Investigation of a Social Issue."

2 Learning Outcomes: List the Specific Learning Outcomes (SLOs) to be assessed by the task

These are found in the syllabus and need to be identified before the tasks are constructed.

Example: Describe a feature of

(Copy and paste directly from the aligned Syllabus: it must show strand, sub strand and SLOs)

3. Assessment/Task:

Describe the task as a form of assessment to measure student achievements of the above learning outcomes at different stages of the lesson/task implementation.

(Think of what are the best types of assessment for the above LOs so that your students can demonstrate they have achieved the learning outcomes. Also include how you will pre-assess their knowledge at the beginning of the lesson and how you will continuously assess them throughout the strand/topic to monitor their learning progress. The summative assessments are the final IA tasks.)

e.g. <u>Diagnostic</u>: (can be oral questions/short tests/ surveys/questionnaires to find out what students already know before the lesson)

<u>Formative</u>: 1. This is the formative use of the summative assessment such as the drafts submitted, self-assessment, peer assessment, teacher assessment of the drafts and specific feedback provided to improve the task. 2. For CATs – this can be similar items prepared by teachers using the SLOs and given to students for practice. After scoring, the feedback needs to be given to improve learning. If majority students not doing well then re-teach using another strategy, assess and monitor learning.

<u>Summative</u>: (these are the final IA tasks or the CATs to measure how much the students have learnt/achieved after the learning period)

4 Resources: List materials required for completing the task (for learning & demonstrating the achievement for the SLOs.

This must specify any material items such as books, documents, maps, stimulus material, equipment required by the task, including use of technology.

5 Guidelines for the teacher on advance preparation requirements

- a) **time required** by the student for task completion (monitoring progress)
- b) recommended dates/date range for task completion
- c) organization of room and hardware to facilitate task completion (learning assessment).

(After the task has been completed and scored, teachers will need an IA score capture sheet to record the performance of all students in the class.)

6 Guidelines for the teacher on task completion and task control

This must specify:

- the role of the teacher during the period of task completion
- <u>instructions</u> that are to be given by the teacher to the students
- actions that are required of the teacher during task completion

7 Preparation by the students beforehand

If students are required to prepare in advance of the task date, preparatory notes must indicate the requirements. For example, students may need to collect support materials for a task that is supervised in a classroom.

8 Task outline for the student

This outline is a brief description of the task that the student is to complete. It is a general description without specific detail.

Example: Your task is to focus on an important social issue. After investigating that issue, you need to process information collected and suggest possible courses of action that authorities could take.

9 Task detail for the student

This must provide a detailed description of the task in the sequence that the student would be expected to follow during task completion. This must clearly state:

- what the student is expected to do
- what the student is expected to record and present for assessment.

10. Feedback & Support

Allocate time for:

- i. Student's self-assessment and correction
- ii. Peer assessment, feedback, and time for improvement
- iii. Teacher assessment, feedback, and time for time improvement

(NB: State how this will be carried out)

11. Final submission & scoring

State when the final task is due and how it will be assessed. State how the school (HOD/SPFSC Coordinator) will monitor the scoring of the tasks.

12 Scoring Rubric

Copy and paste directly from the aligned Syllabus the relevant scoring rubrics

13 Assessment score capture sheet for the task This will be provided by EQAP

(Repeat 1-13 for other tasks)

9.4 Appendix 4: IA Summary Form

South Pacific Form Seven Certificate

STA - IA

Internal Assessment Summary Form

2023

MATHEMATICS WITH STATISTICS

COUNTRY					
SCHOOL					
Task	Brief Description of Tasks	Start Date	End Date	Due to EQAP	Weighting
 Statistical Investigation using Bivariate Data 	This task is to write a Report on any investigation topic of choice and make an investigation by gathering data on that topic, analysing that data and developing a conclusion.				20%
2.Comparison Project	This Task is a group assignment which means that a group investigates a comparison question – by identifying two populations, their variable interest, and analyzing their data in a report.				20%
	TOTAL				40%

Note: 1

1. Be specific about the dates, not just Week 3, Term 1, etc

2. Scoring rubrics/assessment schedules for the tasks are provided in Appendix 3, 4 and 5. Teachers must use these when assessing students' IA tasks.

3. All IA Score Capture Sheets will be provided by EQAP to schools.

Verification	and Endorsement of IA P	rogram
Principal's Name	Teachers Name	School Stamp
Signature	Signature	-
Date	Date	-

A full IA program is to be submitted together with this IA Summary Form.

10.0 ADVISORY SECTION

10.1 Recommended Texts & Resources

This is a list of only some Mathematics texts that are available and have been used for teaching courses for Mathematics with Statistics. It is important teachers use this as only a guide and check current book lists available through publishers and book retailers.

A. Suggested Text

1. Sigma Mathematics -	Barton, D. Longman, 1998 (2 nd E	dition)
2. Sigma Mathematics -	Barton, D. Longman, 2006 (3 rd Ed	dition)

B. Supplementary Texts

- 1. Sigma mathematics Workbook David Barton, 2007
- 2. Achieving in Statistics W. Geldof, 2006
- 3. Statistics Workbook Lakeland, R & Nugent, C, Nulake, 1998
- 4. Year 13 Study Guide, Mathematics with Statistics Barrett, ESA
- 5. Longman write-on Notes *Statistics* Barton, D.
- 6. Bursary Statistics Questions from the last 8 bursary papers with suggested answers.

Really Useful Resources Box 19-939 Woolston Christchurch

- 7 Schaum's Outlines, Probability and Statistics, 2nd education, Speigal et al, McGraw Hill a metal teacher resource.
- 8 Study Pass reference notes: Year 13 Statistics, info@studypass.co.nz
- 9. Some Statistics Websites:
 - NZ Ministry of Education resources <u>www.tki.org.nz</u>
 - Census at schools data, analysis tools and resources www.censusatschool.org.nz
 - University of Auckland <u>www.stat.auckland.ac.nz</u>
 - Secretariat of the Pacific Community website <u>www.spc.int</u>
 - Tonga Statistics department <u>www.spc.int/prism/country/to/stats/</u> Statistics New Zealand <u>www.stats.govt.nz</u>

10.2 Sample Teaching Programme

It is important that teachers recognize that while this course is divided up into 4 specific objectives, the teaching programme should not necessarily have each objective taught as one big chunk.

Below is one example of a teaching programme that splits the objectives into smaller topics of learning. This is merely an example of what could be done, it is not intended that schools will be expected to follow this format. Schools need to be flexible to the needs of their school and community when planning the teaching order of this syllabus.

Week	Learning Outcome	Syllabus Reference	Assessment
Term I			
1 - 3	Solve probability problems.	1.1	
4 - 5	Solve problems involving expected values and variance from discrete probability distributions.	1.2	
6 - 8	Use statistical processes to investigate bivariate data.	3.1	Internal assessment #1
9 - 10	Understanding simple piecewise functions to model data.	2.1	
11 - 13	Model real data using power and exponential functions to solve problems.	2.2	
Term II			
1 - 3	Using probability distributions to model a given situation and solve problems.	1.3	
4	Exam Revision		
5	Exam Time		Exam
6	Review of exam responses		Review
7 - 9	Use statistical processes to investigate numerical data to make a comparison between two populations.	3.2	Internal assessment #2
10 - 12	Using statistical processes	3.3	
13 - 14	Systems of Linear equations.	4.1	
Term III			
1 - 2	Model situations using linear programming techniques to obtain an optimum solution.	2.3	
3 - 4	Use the bisection or Newton-Raphson or Secant method to solve non-linear equations to a given precision.	4.2	
5 - 6	Answer other questions related to statistical processes.		
7	Revision.		
8	Exam Time		Exam
9	Go over Exam.		
10 - 11	Revision/exam preparation.		

Teaching Programme Example – Form 7 Mathematics with Statistics

10.3 Issues & Recommendations for Assessment Governing Bodies

1. Technology:

At the present time the prevalent calculators being used by students are scientific ones. A growing trend in Asian markets is to produce low cost scientific calculators with extra chips that allow some algebraic manipulation. There is also potential for graphical calculators to become more prevalent as the prices of these drop. It is important that the examiner has an awareness of what calculator technology is being used by students and that question styles are adapted so that students who do not have the more advanced technology are not penalized. This is particularly of importance in the topics covered by learning objectives 2 and 4, where the use of a graphics calculator could potentially advantage a student both in simplifying a problem and in saving them a lot of time. While the temptation may be to just ban such technology, we cannot ignore its development and also the maintenance of an exclusion list becomes impractical as the market starts to become flooded with so many new brands. The onus on ensuring fairness must stand with the examiner structuring questions in a way that minimizes the advantages of one calculator over another.

It is also important that students are able to access suitable computer technology and statistical packages to deal with the analysis of data. To understand data students need to be able to deal with a suitable volume of data and a wide variety of variables. It is impractical for students to manage that volume of data by hand and suitable packages need to be provided. The use of such packages also will help keep students up to date with international trends in data analysis.

Teachers will also need professional development in using such packages.

2. Development of Statistical Thinking:

Statistics and the development of statistical thinking in our students is becoming of increasing importance in our world. We are now in a data driven world. Technology has allowed us to deal with large amounts of data to get clearer pictures to assist societies in our economic and social development. We need students who understand the whole statistical process, not just the mechanics. They need to be able to gather, manage, analyse and interpret data, while considering variation. These understandings take time, so it is important that a greater emphasis on Statistics is given throughout all years of secondary education. This is a trend that is starting to occur internationally, and it is important that the Pacific Islands region gives it some careful consideration.

3. Professional Development

There has been a new topic added to the scheme, analysis of bivariate data. Teachers will need resources and professional development in this area. There is also a changing trend internationally starting to come about on how Statistics is taught. In the past, Statistics syllabus were based on a mathematical perspective on statistics. Currently the emphasis has changed to developing an understanding of how statistics are dealt with in the real world. There is less importance placed on the actual performance of calculations (which become trivialized with technology) and more importance placed on understanding what the measures calculated are actually telling us about the data and how it relates back to the population. With this change in thinking it is very important that teachers are provided support and professional development to help them understand the impact of this change on what has to happen in the teaching and learning of Statistics in the classroom.

The End