

EDUCATIONAL QUALITY AND ASSESSMENT PROGRAMME

S

with

C

C.

Scoring Schedule 2021

South Pacific Form Seven Certificate

© Educational Quality and AssessmentProgramme, 2021 3 Luke Street, Nabua, Private Mail Bag, Suva, Fiji. Telephone: (679) 3370733 Fax: (679) 3370021 All rights reserved. No part of this publication may be reproduced by any means without the prior permission of the Educational Quality and AssessmentProgramme.

SCORING RUBRIC FOR MATHEMATICS with CALCULUS

Item	Skill level	Evidence (expected answers)	Level 1 (Unistructural)	Level 2 (Multistructural)Level 3 (Relational)Level 4 (Extended Abstract)
1.1	1	$2x + y = 4 \rightarrow (1)$ $y = x - 5 \rightarrow (2)$ Substitute (2) into (1) Find y $2x + (x - 5) = 4 \qquad y = x - 5$ $3x - 5 = 4 \qquad y = 3 - 5$ $3x = 9 \qquad y = -2$ x = 3 $\therefore coordinates of P is (3, -2)$	Correct answer (3, -2) OR Able to get x = 3 or y = -2	Alternate Solution: Elimination Method $2x + y = 4 \rightarrow (1)$ $2x + y = 4$ $y = x - 5 \rightarrow (2) -(-x + y = -5)$ $3x = 9 \therefore x = 3$
1.2	1	$ \begin{array}{l} 3(2-x) \leq -18 \\ 6-3x \leq -18 \\ -3x \leq -18 - 6 \\ -3x \leq -24 \\ x \geq 8 \end{array} $	Correct answer $x \ge 8$ OR Sign reversed to \ge	Alternate Solution: DON'T EXPAND. TAKE "3 ACROSS" $3(2-x) \le -18 \rightarrow (2-x) \le -\frac{18}{3} \rightarrow (2-x) \le -6$ $\rightarrow -x \le -8 \therefore x \ge 8$
1.3	1	$y = \frac{3x}{2} + h$ $y - h = \frac{3x}{2}$ 2(y - h) = 3x $\therefore x = \frac{2(y - h)}{3} \text{ or } x = \frac{2y - 2h}{3} \text{ or } x = \frac{2(h - y)}{-3}$	Correct answer OR Any correct two steps.	
1.4	1	Factorise $3x^2 + 11x + 10$ Factors of $30 = 6 \times 5$ 11 = 6 + 5 $(3x^2 + 6x) + (5x + 10)$ 3x(x + 2) + 5(x + 2) (3x + 5)(x + 2)	Correct two factors (3x + 5)(x + 2) OR Any one correct factor	Some might use the Quadratic Equation to get the factors: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(11) \pm \sqrt{(11)^2 - 4(3)(10)}}{2(3)} = \frac{-(11) \pm \sqrt{1}}{6}$ $\therefore x = \frac{-11 + 1}{6} = \frac{-10}{6} = -\frac{5}{3} \rightarrow (3x + 5) x = \frac{-11 - 1}{6} = \frac{-12}{6}$ $x = -2 \rightarrow (x + 2)$

1.5	1	Solve $x^2 - 7x - 44 = 0$	Correct answer $x = 11$ $x = -4$	Some might use the Quadratic Equation to get the factors:
		Factors of $-44 = -11 \times 4$ -7 = -11 + 4	OR	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(1)(-44)}}{2(1)} = \frac{7 \pm \sqrt{225}}{2}$
		(x-11)(x+4) = 0	Any one correct value of <i>x</i>	$\therefore x = \frac{7+15}{2} = \frac{22}{2} = 11 \qquad x = \frac{7-15}{2} = \frac{-8}{2} = -4$
		x = 11 x = -4		
		$x \in \{-4, 11\}$		
1.6	1	$(xy^2)^4 \times (3x^2y)^2$	Correct answer	
		$= x^4 y^8 \times 3^2 x^4 y^2$	OR	
		$= x^4 y^8 \times 9 x^4 y^2$	Has shown any correct use of law of	f
		$=9x^8y^{10}$	indices.	
1.7	1	Simplify	Correct answer	
		$\frac{3log2 + log4}{log2}$	OR	$\frac{\text{Alternate Solution:}}{3\log 2 + \log 4 \log 2^3 + \log 4 \log 8 + \log 4}$
		1098		$\frac{\log 8}{\log 8} = \frac{\log 8}{\log 8} = \frac{\log 8}{\log 8}$
		$=\frac{3log2+log2^2}{log2^3}$	Has shown any correct use of logarithmic laws.	$=\frac{l0g32}{log8}=\frac{5}{3}$
		$=\frac{3log2+2log2}{3log2}$		
		$=\frac{5log2}{3log2}$		
		$=\frac{5}{3}$		

1.8	1	Divide $x^3 + 4x^2 - x + 3$ by $(x + 2)$	Correct answer	Alternate Solution:	٦
		$x^2 + 2x - 5$	OR	(x + 2) =0 x = -2 -2 -4 10	
		$\begin{array}{c c} x+2 \overline{\smash{\big } x^3 + 4x^2 - x + 3} \\ \underline{-x^3 + 2x^2} \\ 2x^2 - x \\ \underline{-2x^2 + 4x} \\ -5x + 3 \\ \underline{-5x - 10} \\ 13 \end{array}$	Any two correct terms OR Remainder = 13	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
1.0		$\Rightarrow x^2 + 2x - 5 + \frac{13}{x+2}$			
1.9	1	$x^3 + 3x^2 - x + 7$ divide by $(x - 2)$	Correct answer	Some might use LONG DIVISION to get the factors:	٦
		Let $f(x) = x^3 + 3x^2 - x + 7$	OR	(x - 2) =0 x = 2 2 10 18	
		By remainder theorem: f(2) = remainder	Substitutes $x = 2$	2 1 3 -1 7 1 5 9 25	
		$f(2) = (2)^{3} + 3(2)^{2} - (2) + 7$ = 8 + 12 - 2 + 7 = 25 \Rightarrow remainder		$x^2 + 5x - 5 + \frac{25}{x - 2}$	
1.10	1	$3\sqrt{2}(\sqrt{2}-\sqrt{8})$	Correct answer		
		$= 3\sqrt{4} - 3\sqrt{16}$			
		= 3(2) - 3(4)			
		= 6 - 12			
		= -6			

1.11	1	$\frac{12x - 4}{5} = 3x + 1$ $12x - 4 = 5(3x + 1)$ $12x - 4 = 15x + 5$ $12x - 15x = 5 + 4$	Correct answer 'Allow for slips'		
		-3x = 9 $x = -3$			
1.12	1	$\binom{3}{0}(2x)^{3}y^{0} = 1 \cdot 2^{3}x^{3} \cdot 1 = 8x^{3}$ $\binom{3}{1}(2x)^{2}y^{1} = 3 \cdot 2^{2} \cdot x^{2} \cdot y = 12x^{2}y$ $\binom{3}{2}(2x)^{1}y^{2} = 3 \cdot 2^{1} \cdot x \cdot y^{2} = 6xy^{2}$ $\binom{3}{3}(2x)^{0}y^{3} = 1 \cdot 1 \cdot y^{3} = y^{3}$ $= 8x^{3} + 12x^{2}y + 6xy^{2} + y^{3}$	Correct answer 'Allow for slips'		
1.13a	1	$z + \overline{w} = (-1 + i) + (2 + i)$ = (-1 + 2) + (1 + 1)i = 1 + 2i	Correct answer		
1.13b	1	z = -1 + i Using the calculator; $r = \sqrt{2}$, $\theta = 135^{\circ} \text{ or } \frac{3\pi}{4}$	Correct answer OR Finds r or θ		

		Polar form: $z = \sqrt{2}(\cos 135^\circ + i\sin 135^\circ)$ or $z = \sqrt{2} \cos 135^\circ$				
1.13c	2	$\frac{z}{w} = \frac{(-i+1)}{(2-i)} \times \frac{(2+i)}{(2+i)}$ $= \frac{-2-i+2i+i^2}{4+2i-2i-i^2}$ $= \frac{-2+i+(-1)}{4-(-1)}$ $= \frac{-3+i}{5}$ $= -\frac{3}{5} + \frac{1}{5}i$	Multiplied by the conjugate of $2 - i$ OR Substitutes $i^2 = -1$	Correct answer $-\frac{3}{5} + \frac{1}{5}i$ OR $\frac{-3+i}{5}$		
1.14	4	$z^{3} = 64 (\cos 60^{\circ} + i \sin 60^{\circ}) \text{ Im}$ Angles: $\theta = \frac{360^{\circ}}{3} = 120^{\circ} \text{ apart}$ $\theta_{1} = \frac{60^{\circ}}{3} = 20^{\circ}$ $\theta_{2} = 20 + 120 = 140^{\circ}$ $\theta_{3} = 140 + 120 = 260^{\circ}$ $r = 64^{\frac{1}{3}} = 4$ $z_{0} = 4cis20^{\circ} = 4cis\frac{\pi}{9} = 3.76 + 1.37i$ $z_{1} = 4cis140^{\circ} = 4cis\frac{7\pi}{9} = -3.06 + 2.57i$ $z_{2} = 4cis260^{\circ} = 4cis\frac{13\pi}{9} = -0.69 - 3.94i$	Has the correct value of r = 4 OR Uses De Moivre's theorem.	Has only one root correct without the Argand diagram.	Has only two roots correct without the Argand diagram.	Has all the 3 roots correct and represented on the Argand diagram. All 3 roots either in rectangular form or polar form.

LHS: $\frac{\sin \theta}{\cos \theta} \times \frac{1}{\sin \theta}$ OR Substitutes the reciprocal identities $tan\theta = \frac{sin\theta}{cos\theta}$ $sec\theta = RHS$ OR Substitutes the reciprocal identities $tan\theta = \frac{sin\theta}{cos\theta}$ $csc\theta = \frac{1}{sin\theta}$ 2.1 b2 $sin^2 \theta \cdot cot^2 \theta + sin^2 \theta = 1$ LHS:Has shown that $1 cos^2 \theta$ Correct steps shown	2.1 a	1	$tan\theta.csc\theta = sec\theta$	Correct steps shown		
$\frac{\sin \theta}{\cos \theta} \times \frac{1}{\sin \theta}$ OR $\frac{1}{\cos \theta}$ $\frac{1}{\sin \theta}$ $\frac{1}{\cos \theta}$ $\frac{\sin \theta}{\cos \theta}$ $sec\theta = RHS$ $sec\theta = \frac{1}{\sin \theta}$ 2.1 b 2 $\sin^2 \theta \cdot \cot^2 \theta + \sin^2 \theta = 1$ Has shown that $1 \cos^2 \theta$ LHS: $\cos^2 \theta$			LHS:	_		
$\begin{vmatrix} \overline{\cos \theta} \times \overline{\sin \theta} \\ \frac{1}{\cos \theta} \\ sec\theta = RHS \end{vmatrix}$ Substitutes the reciprocal identities $tan\theta = \frac{sin\theta}{cos\theta} \\ csc\theta = \frac{1}{sin\theta} \end{vmatrix}$ 2.1 b 2 $sin^2 \theta \cdot \cot^2 \theta + \sin^2 \theta = 1 \\ LHS: \qquad Has shown that \\ 1 \cos^2 \theta \end{vmatrix}$ Correct steps shown			$\sin\theta$ 1	OR		
$\frac{1}{\cos \theta}$ $sec\theta = RHS$ 2.1 b $2 \qquad \sin^2 \theta \cdot \cot^2 \theta + \sin^2 \theta = 1$ $LHS:$ $3 \qquad \text{LHS:}$ $3 \qquad LH$			$\frac{1}{\cos\theta} \times \frac{1}{\sin\theta}$			
$\frac{1}{\cos \theta}$ $sec\theta = RHS$ 2.1 b $2 \qquad \sin^2 \theta \cdot \cot^2 \theta + \sin^2 \theta = 1$ $LHS:$ $reciprocal identities tan \theta = \frac{sin\theta}{cos\theta}$ $csc\theta = \frac{1}{sin\theta}$ $reciprocal identities tan \theta = \frac{sin\theta}{cos\theta}$ $csc\theta = \frac{1}{sin\theta}$ $reciprocal identities tan \theta = \frac{sin\theta}{cos\theta}$				Substitutes the		
$\boxed{\begin{array}{c} \hline \cos\theta\\ sec\theta = \text{RHS} \end{array}} \qquad \boxed{\begin{array}{c} \cos\theta\\ tan\theta = \frac{sin\theta}{cos\theta}\\ csc\theta = \frac{1}{sin\theta} \end{array}} \\ \boxed{\begin{array}{c} 2.1 \text{ b} \end{array}} \qquad 2 \qquad \frac{sin^2\theta \cdot \cot^2\theta + \sin^2\theta = 1}{L\text{HS}:} \qquad $			1	reciprocal identities		
$\begin{aligned} tan\theta &= \frac{1}{\cos\theta} \\ sec\theta &= \text{RHS} \end{aligned}$ $\begin{aligned} tan\theta &= \frac{1}{\cos\theta} \\ csc\theta &= \frac{1}{\sin\theta} \end{aligned}$ $\begin{aligned} 2.1 \text{ b} & 2 & \sin^2\theta \cdot \cot^2\theta + \sin^2\theta = 1 \\ LHS: & 1 & \cos^2\theta \end{aligned}$ Correct steps shown			$\overline{\cos\theta}$	sinθ		
$sec\theta = RHS$ $csc\theta = \frac{1}{sin\theta}$ 2.1 b2 $sin^2 \theta . cot^2 \theta + sin^2 \theta = 1$ Has shown that $1 cos^2 \theta$ Correct steps shown				$tan\theta = \frac{1}{cos\theta}$		
$\begin{array}{c} csc\theta = \frac{csc\theta}{sin\theta} \\ \hline 2.1 \text{ b} & 2 & \frac{\sin^2\theta \cdot \cot^2\theta + \sin^2\theta = 1}{LHS:} \\ \hline \end{array} Has shown that \\ 1 & \cos^2\theta \\ \hline \end{array} Correct steps shown \\ \hline \end{array}$			$sec\theta = RHS$	1		
2.1 b2 $\sin^2 \theta \cdot \cot^2 \theta + \sin^2 \theta = 1$ Has shown that $1 \cos^2 \theta$ Correct steps shown				$csc\theta = \frac{1}{sin\theta}$		
2.1 b 2 $\sin^2 \theta \cdot \cot^2 \theta + \sin^2 \theta = 1$ LHS: Has shown that $1 \cos^2 \theta$ Correct steps shown						
LHS: $1 \cos^2 \theta$	2.1 b	2	$\sin^2\theta \cdot \cot^2\theta + \sin^2\theta = 1$	Has shown that	Correct steps shown	
			LHS:	1 $\cos^2 \theta$		
$\frac{1}{\tan^2\theta} = \frac{1}{\sin^2\theta} \text{OR}$			$\lim_{n \to \infty} \frac{1}{2}$	$\frac{1}{\tan^2 \theta} = \frac{1}{\sin^2 \theta}$	OR	
$\sin \theta \times \frac{1}{\tan^2 \theta} + \sin \theta$			$\sin \theta \propto \frac{1}{\tan^2 \theta}$			
$\sin^2 \theta \propto \frac{1}{1}$ $\sin^2 \theta$ Was able to get			$\sin^2 \theta \times \frac{1}{\cos^2 \theta}$		Was able to get	
$\sin^2\theta + \sin^2\theta$			$\sin \theta \wedge \frac{1}{\sin^2 \theta} + \sin^2 \theta$		$\cos^2\theta + \sin^2\theta$	
$\cos^2 \theta$ at the end			$\cos^2 \theta$		at the end	
			2.2			
$\sin^2 \theta \times \frac{\cos^2 \theta}{\sin^2 \theta} + \sin^2 \theta$			$\sin^2 \theta \times \frac{\cos^2 \theta}{\cos^2 \theta} + \sin^2 \theta$			
$\sin^2\theta$ $\sin^2\theta$			$\sin^2\theta$ $\sin^2\theta$			
$\cos^2\theta + \sin^2\theta$			$\cos^2\theta + \sin^2\theta$			
			4			
1 = RHS			1 = RHS			
		1				
2.2 1 $2\cos\theta = -\sqrt{3}$ Correct answer	2.2	1	$2\cos\theta = -\sqrt{3}$	Correct answer		
			_	OD		
$\cos \theta = \frac{-\sqrt{3}}{\sqrt{3}}$			$\cos \theta = \frac{-\sqrt{3}}{\sqrt{3}}$	OK		
$\left \begin{array}{c} \cos v - \frac{1}{2} \end{array} \right $ One correct angle			$\cos v = \frac{1}{2}$	One correct angle		
θ falls on quadrant II and III either in degrees or			heta falls on quadrant II and III	either in degrees or		
radians				radians		
$\theta = 150^{\circ}, 210^{\circ}$			$ heta = 150^\circ, 210^\circ$	Taulalls.		
$\theta \epsilon \{150^\circ, 210^\circ\} \text{ or } \theta \epsilon \left\{\frac{5\pi}{6}, \frac{7\pi}{6}\right\}$			$\theta \epsilon \{150^\circ, 210^\circ\} \text{ or } \theta \epsilon \{\frac{5\pi}{6}, \frac{7\pi}{6}\}$			

2.5	3	$A = \frac{max - min}{2} = \frac{100100}{2} = \frac{200}{2} = 100$ $B = \frac{360^{\circ}}{\frac{1}{2}} = \frac{2\pi}{\frac{1}{2}} = 4\pi \text{ or } 720^{\circ}$ $C = 0 \text{ and } D = 0$ $\therefore V(t) = 100 \sin 4\pi t$	Was able to identify the amplitude A = 100 OR Has $C = 0$ OR Has $D = 0$	Was able to find the value of B correctly. $B = \frac{360^{\circ}}{\frac{1}{2}} = \frac{2\pi}{\frac{1}{2}}$ $= 4\pi \text{ or } 720^{\circ}$	Correct answers. A = 100 $B = 4\pi \text{ or } 720^{\circ}$ C = 0 D = 0	
3.1	1	P(x) is not differentiable at: x = 1, x = 3, x = 5	Correct answer OR Any correct value given.			
3.2	2	$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \frac{3^2 - 9}{3 - 3} = \frac{0}{0} \to \text{limit may exist}$ $\lim_{x \to 3} \frac{(x + 3)(x - 3)}{x - 3} \qquad \text{L'Hopital's Rule}$ $\lim_{x \to 3} x + 3 \qquad \lim_{x \to 3} \frac{2x}{1}$ $= 3 + 3 \qquad = 2(3)$ $= 6 \qquad = 6$	Was able to use Difference of Two Squares to factorise the numerator into (x + 3)(x - 3) OR Substitutes 3 into the expression	Correct answer		
3.3	2	$\lim_{x \to \infty} \frac{x^2 - 4x^3 + x - 3}{x^3 - 6x}$ $\lim_{x \to \infty} \frac{\frac{x^2}{x^3} - \frac{4x^3}{x^3} + \frac{x}{x^3} - \frac{3}{x^3}}{\frac{x^3}{x^3} - \frac{6x}{x^3}}$	Was able to identify the variable with the highest power, x^3	Correct answer		

		$\lim_{x \to \infty} \frac{\frac{1}{x} - 4 + \frac{1}{x^2} - \frac{3}{x^3}}{1 - \frac{6}{x^2}}$ $= \frac{0 - 4 + 0 - 0}{1 - 0}$ $= \frac{-4}{1}$ $= -4$				
3.4	2	$f(x) = x^{7} + 5e^{3x} - 2x^{-2} + x - 17$ $f'(x) = 7.1x^{7-1} + 3.5e^{3x} - 22x^{-2-1} + x^{1-1}$ $f'(x) = 7x^{6} + 15e^{3x} + 4x^{-3} + 1$	Any term differentiated correctly.	Correct answer		
3.5	4	$s(t) = -t^{3} + 3t^{2} - 3t + 12$ 1 st Derivative: $v(t) = s'(t) = -3t^{2} + 6t - 3$ 2 nd Derivative: a(t) = v'(t) = -6t + 6 Acceleration at t = 3 s: $a_{t=3} = a(3)$ $\Rightarrow a(3) = -6(3) + 6$ $\Rightarrow a = -12 m/s^{2}$	Shows any sign of differentiation. OR Substitutes t = 3 to an equation which was differentiated incorrectly.	Was able to differentiate s(t) once correctly $-3t^2 + 6t - 3$	Was able to differentiate s(t) twice correctly. -6t + 6	Correct answer

3.6	4	Amount of fencing wire used = 3000 x + y + x = 3000 2x + y = 3000 y = 3000 - 2x Area: $A = x \times y$ A = x(3000 - 2x) $A = 3000x - 2x^2$ Differentiate A:	Was able to write an equation for the amount of fencing wire used: 2x + y = 3000 OR Making y or x the subject of the	Writes the area equation correctly. A = x(3000 - 2x) or $A = 3000x - 2x^2$ OR	Was able to differentiate correctly and equate it to zero: Maximum Area: A' = 0 OR Has either the value	Correct answer
		$A = 3000 - 4x$ Maximum Area: $A' = 0$ $3000 - 4x = 0$ $4x = 3000$ $\therefore x = 750 m$ Find y: $y = 3000 - 2x$ $= 3000 - 2(750)$ $x = 1500 m$	formula: y = 3000 - 2x OR Shows any sign of differentiation.	Was able to differentiate the area equation correctly. A' = 3000 - 4x	for x or y correctly. x = 750 m y = 1500 m	
		$y = 1500 m$ $\Rightarrow Maximum Area = x \times y$ $= 750 \times 1500$ $= 1125000 m^{2}$				
4.1	1	$\int \left(12x^5 + \frac{1}{2}x^2 - x\right) dx$ = $\frac{12x^{5+1}}{5+1} + \frac{1}{2}\frac{x^{2+1}}{(2+1)} - \frac{x^{1+1}}{1+1}$ = $\frac{12x^6}{6} + \frac{1}{2}\frac{x^3}{3} - \frac{x^2}{2}$ = $2x^6 + \frac{x^3}{6} - \frac{x^2}{2} + C$	Correct answer OR Any term integrated correctly			

4.2	1	$\int \frac{1}{2} e^{4x+3} dx$ $\frac{1}{2} \int e^{4x+3} dx$ $= \frac{1}{2} \cdot \frac{e^{4x+3}}{4} + C$ $= \frac{1}{8} e^{4x+3} + C$	Correct answer Do not penalise if <i>C</i> is missing OR Has $\frac{e^{4x+3}}{4}$		
4.3	2	$\int_{-1}^{4} 3x^{2} - 2 dx$ $= \left[\frac{3x^{3}}{3} - 2x\right]_{-1}^{4}$ $= [x^{3} - 2x]_{-1}^{4}$ $= [(4)^{3} - 2(4)] - [(-1)^{3} - 2(-1)]$ $= [64 - 8] - [-1 + 2]$ $= 56 - 1$ $= 55$	Any term integrated Correctly. OR Shows the Fundamental Theorem of Calculus: F(4) - F(-1)	Correct answer	
<mark>4.4</mark>	2	$\int 8x \cos 4x^2 dx \qquad Let \ u = 4x^2$ $\int 8x \cos u \ \frac{du}{8x} \qquad \frac{du}{dx} = 8x$ $\int \cos u \ du \qquad dx = \frac{du}{8x}$ $= \sin u + C$ $= \sin 4x^2 + C$	Differentiates u correctly. $\frac{du}{dx} = 8x$ OR Has <i>sin u</i> the integral of <i>cos u</i>	Correct answer	

4.5 a	2	$v(t) = 3t^{2} - 4t - 8$ Velocity at $t = 3$: $v(3) = 3.(3)^{2} - 4(3) - 8$ = 27 - 12 - 8 v = 7 m/s	Any substitution of t = 3	Correct answer		
4.5 b	3	$v(t) = 3t^{2} - 4t - 8$ Displacement Equation: $s(t) = \int v(t) dt$ $= \int (3t^{2} - 4t - 8) dt$ $= \frac{3t^{3}}{3} - \frac{4t^{2}}{2} - 8t + C$ $= t^{3} - 2t^{2} - 8t + C$ t = 0, s(0) = 0 ∴ $C = 0$ $s(t) = t^{3} - 2t^{2} - 8t$ $s(1) = (1)^{3} - 2(1)^{2} - 8(1)$ = 1 - 2 - 8 ∴ $s = -9 m from the point.$	Was able to integrate any term correctly. OR Shows any sign of integration. OR Find <i>s</i> (1)	Uses the initial conditions to find the constant. C = 0 OR Has the correct expression for $s(t)$: $s(t) = t^3 - 2t^2 - 8t$	Correct answer	
4.6	4	Let $P(t)$ = quantity at time, t and k be the constant of proportionality $(k > 0 \Rightarrow growth \ rate)$ $\frac{dP}{dt} \alpha P$	Was able to separate variables: $\frac{dP}{P} = k dt$ OR	Was able to get the general solution: $P = P_0 e^{kt}$	Used the initial conditions to find k: $ln\left(\frac{5}{3}\right) = k$ or	Correct answer Possible answers will depend on the value of k:

	dP LP		OR	<i>k</i> = 0.5108 or	P = 6944 mosquitoes
	$\overline{dt} = kP$	dP		k = 0 . 511 or	<i>D</i>
		$\frac{dt}{dt} = kP$	$P=1500e^{kt}$	k = 0.51	= 6948 mosquitoes
	$\int \frac{dP}{dt} = \int k dt$				D
	$\int \frac{1}{P} = \int k dt$				$P_{k=0.51}$ = 6927 mosquitoes
		OR			.
	lnP = kt + C				
	$lnP = kt + lnP_0$ Let $C = ln P_0$	Integrates on both			
	$lnP - lnP_0 = kt$	sides.			
	$ln\left(\frac{P}{P_0}\right) = kt$				
	$\frac{P}{r} = e^{kt}$				
	$\therefore \mathbf{P} = \mathbf{P}_{0} \mathbf{e}^{\mathbf{k}t} \text{where } P_0 = \text{initial value}$				
	Find k:				
	$P_0 = 1500, t = 1, P = 2500$				
	$2500 = 1500e^{k(1)}$				
	$\frac{2500}{2} - a^k$				
	$\frac{1500}{1500} = e$				
	$ln\left(\frac{5}{3}\right) = k$				
	k = 0.5108				
	So $P = 1500e^{0.5108t}$				
	Population after 3 days: $t = 3$				
	$P = 1500e^{0.5108(3)}$				
	$= 1500e^{1.5324}$				
	P = 6944 mosquitoes				
	$P_{k=0.511} = 6948 mosquitoes$				
	$P_{k=0.51} = 6927 mosquitoes$				