No. 103/3



EDUCATIONAL QUALITY AND ASSESSMENT PROGRAMME





E

S

R

Y

Scoring Rubric 2021

## South Pacific Form Seven Certificate

© Educational Quality and Assessment Programme, 2021 3 Luke Street, Nabua, Private Mail Bag, Suva, Fiji. Telephone: (679) 3370233 Fax: (679) 3370021 All rights reserved. No part of this publication may be reproduced by any means without the prior permission of the Educational Quality and Assessment Programme.

| SLO         | Q.                                                         | SL | Evidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Student Response Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         |                                                                                                                   |  |  |
|-------------|------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
|             | No.                                                        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Extended Abstract<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relational<br>3                                                                                                                                                                                                                                                                                                                                         | Multistructural<br>2                                                                                                                                                                                                                                                    | Unistructural<br>1                                                                                                |  |  |
| Strand 1: A | Strand 1: Atomic Structure, Bonding and Related Properties |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         |                                                                                                                   |  |  |
| CHE1.1.1.1  | 1.1                                                        | 1  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         | С                                                                                                                 |  |  |
| CHE1.1.3.1  | 1.2                                                        | 3  | With the [Ar]3d <sup>4</sup> 4s <sup>2</sup> configuration, the 3d orbital is partially<br>filled while the 4s is fully filled. With the [Ar]3d <sup>5</sup> 4s <sup>1</sup><br>configuration, the 3d orbital is half filled while the 4s orbital<br>is also half filled. <b>Since half-filled d orbitals have extra<br/>stability than partially filled d orbitals, Cr assumes the</b><br>[Ar]3d <sup>5</sup> 4s <sup>1</sup> configuration to attain the extra stable state.                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Two or more ideas are<br>correctly given which are<br>linked, as the example given<br>in bold i.e. the stabilities of<br>both electron configurations<br>are mentioned and<br>compared.                                                                                                                                                                 | Two independent<br>ideas are correctly<br>given. For example,<br>the stability of each<br>electronic<br>configuration is<br>mentioned separately<br>but not linked.                                                                                                     | Any one correct idea is<br>given. e.g. half-filled<br>orbitals are more stable<br>than partially filled orbitals. |  |  |
| CHE1.1.2.2  | 1.3                                                        | 2  | <ul> <li>The nuclear charge of an atom.</li> <li>The shielding effect of electrons in an atom</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                         | Two correct ideas/                                                                                                                                                                                                                                                      | One correct idea/factor is                                                                                        |  |  |
| CHE1 1 1 3  | 1 / 2                                                      | 1  | The silleding effect of electrons in an atom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         | One correct idea is given                                                                                         |  |  |
| CHE1.1.4.1  | 1.4b                                                       | 4  | Firstly, water and ethanol are both polar due to their bent<br>and tetrahedral shapes, respectively. The polarity results in<br>strong intermoleculer forces of attraction (hydrogen bonds)<br>between water and ethanol molecules in their pure<br>solutions. Furthermore, in pure form, water has open<br>spaces between its molecules arising from its shape and<br>hydrogen bonding. However, when the water and ethanol<br>are mixed, hydrogen bonds between the water and ethanol<br>also forms that draws the different molecules close<br>together. The open space structure of liquid water is<br>disrupted, and the empty space becomes less. The two<br>different molecules pack closer together than in pure<br>solution, resulting in a reduction of volume. | <ul> <li>Two or more ideas are correctly given which are linked, and an important conclusion is derived, e.g.</li> <li>the compounds form hydrogen bonds in between their molecules in their pure form, and</li> <li>the two compounds form hydrogen bonds in between each other's molecules in the mixture.</li> <li>This leads to disruption in the open space structure of water and closer packing of the molecules of the two compounds,</li> <li>resulting in a reduction of volume.</li> </ul> | <ul> <li>Two or more ideas are correctly given which are linked, e.g.</li> <li>the compounds form hydrogen bonds in between their molecules in their pure form, and</li> <li>the two compounds form hydrogen bonds in between each other's molecules in the mixture.</li> <li>This leads to disruption in the open space structure of water.</li> </ul> | Two independent<br>ideas are correctly<br>given, e.g.<br>• the compounds form<br>hydrogen bonds in<br>between their<br>molecules in their<br>pure form, and<br>• the two compounds<br>form hydrogen<br>bonds in between<br>each other's<br>molecules in the<br>mixture. | Any one correct idea is<br>given, e.g. the compounds<br>have hydrogen bonding<br>between its molecules.           |  |  |
| CHE1.2.1.3  | 1.5a                                                       | 1  | It is a positively charged particle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         | One correct idea is given.                                                                                        |  |  |
| CHE1.2.1.1  | 1.5b                                                       | 1  | A process where the nucleus of an atom is split into two or more smaller nuclei.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         | One correct idea is given.                                                                                        |  |  |
| CHE1.2.3.3  | 1.5c                                                       | 3  | 20.0 g to 10.0 g is one half-life.<br>10.0 g to 5.0 g is another half-life.<br>5.0 g to 2.5 g is another half-life.<br>Therefore, total of 3 half-lives.<br>Time = 245,000 $\times$ 3 = 735,000 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Two correct ideas are given<br>and linked e.g. the mass<br>after each half-life is<br>determined, three half-lives<br>are determined as the time<br>for decay to 2.5 g and the<br>total time is calculated from                                                                                                                                         | Two independent<br>correct ideas are<br>given, e.g. the mass<br>after each half-life is<br>determined and three<br>half-lives are<br>determined as the<br>time for decay.                                                                                               | One correct idea is given,<br>e.g. the mass after one<br>half-life is determined.                                 |  |  |

|             |                                                             |      |                                                                                                                                                                                                                                                                                      | the number of half-lives and                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                               |  |  |
|-------------|-------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|             |                                                             |      |                                                                                                                                                                                                                                                                                      | t <sub>1/2</sub> .                                                                                                                                                                                   |                                                                                                                                                                                                                    |                                                                                                                                                                                               |  |  |
| CHE1.3.2.1  | 1.6a                                                        | 2    | <ul> <li>Shows variable oxidation states</li> </ul>                                                                                                                                                                                                                                  |                                                                                                                                                                                                      | Two ideas/                                                                                                                                                                                                         | One correct idea/                                                                                                                                                                             |  |  |
|             |                                                             |      | <ul> <li>Forms coloured ions or compounds</li> </ul>                                                                                                                                                                                                                                 |                                                                                                                                                                                                      | characteristics are                                                                                                                                                                                                | characteristic is given.                                                                                                                                                                      |  |  |
|             |                                                             |      | Forms stable complexes                                                                                                                                                                                                                                                               |                                                                                                                                                                                                      | correctly given.                                                                                                                                                                                                   |                                                                                                                                                                                               |  |  |
| CHE1.3.1.1  | 1.6b                                                        | 1    | Iron or Fe                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                                                                                    | One correct idea is given.                                                                                                                                                                    |  |  |
| CHE1.3.1.2  | 1.7                                                         | 1    | Tetraamminecopper(II) ion                                                                                                                                                                                                                                                            |                                                                                                                                                                                                      |                                                                                                                                                                                                                    | One correct idea is given.                                                                                                                                                                    |  |  |
| Strand 2: E | Strand 2: Energy Changes in Chemical and Physical Processes |      |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                                                                                                                               |  |  |
| CHE2.1.1.1  | 2.1                                                         | 1    | С                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                      |                                                                                                                                                                                                                    | One correct idea is given.                                                                                                                                                                    |  |  |
| CHE2.1.1.2  | 2.2                                                         | 1    | Standard enthalpy of ionisation                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                                                                                    | One correct idea is given.                                                                                                                                                                    |  |  |
| CHE2.1.1.3  | 2.3a                                                        | 1    | Enthalpy of combustion or combustion                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                    | One correct idea is given.                                                                                                                                                                    |  |  |
| CHE2.1.2.3  | 2.3b                                                        | 2    | $CH_{4 (g)} + 2O_{2 (g)} \rightarrow CO_{2 (g)} + 2H_2O_{(g)} \Delta H = -890 \text{ kJ/mol}$                                                                                                                                                                                        |                                                                                                                                                                                                      | At least two correct<br>ideas are given e.g.<br>balanced equation<br>with negative enthalpy<br>change value.<br>Or able to list down<br><b>both</b> the products and<br>reactants correctly.                       | One correct idea is given,<br>e.g. unbalanced equation<br>with negative enthalpy<br>change value.<br>Or able to identify <b>either</b><br>the products or reactants<br>correctly              |  |  |
| CHE2.1.3.4  | 2.4                                                         | 3    | $ \begin{array}{l} \mbox{The heat or enthalpy of the reaction is calculated using} \\ \mbox{Hess's Law:} \\ \Delta \mathcal{H}^{r}_{rxn} = \sum \Delta \mathcal{H}^{r}_{f} (products) - \sum \Delta \mathcal{H}^{r}_{f} (reactants) \\ -179.4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | Two or more correct ideas<br>are given and linked e.g.<br>Hess's law equation is<br>stated and $\Delta H_{\rm f}$ values are<br>used for calculation after<br>linking with the chemical<br>equation. | At least two<br>independent correct<br>ideas are given e.g.<br>Hess's law equation is<br>stated and given $\Delta H_{\rm f}^{\rm c}$<br>values are used for<br>calculation.                                        | One correct idea is given,<br>e.g. Hess's law equation is<br>stated.                                                                                                                          |  |  |
| Strand 3: A | queous                                                      | Equi | librium Systems                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                                                                                                                               |  |  |
| CHE3.1.1.1  | 3.1a                                                        | 1    | В                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                      |                                                                                                                                                                                                                    | One correct idea is given.                                                                                                                                                                    |  |  |
| CHE3.1.3.1  | 3.1b                                                        | 3    | $K_{c} = [CH_{3}OH] / [CO] [H_{2}]^{2}$ $[CO] = 0.20 \text{ moles}/2 \text{ litres} = 0.10 \text{ mol}$ $[H_{2}] = 0.20 \text{ moles}/2 \text{ litres} = 0.10 \text{ mol}$ $10.5 = [CH_{3}OH] / (0.10) (0.10)^{2}$ $[CH_{3}OH] = 0.105 \text{ M}$                                    | Two or more correct ideas<br>are given and linked e.g.<br>$K_c$ expression is stated,<br>reactant concentrations are<br>calculated and used to<br>determine the [H <sub>3</sub> OH].                 | At least two<br>independent correct<br>ideas are given e.g.<br>$K_c$ expression is stated<br>and reactant<br>concentrations are<br>calculated.<br>Able to see the<br>"DIVISION by 2 litres"<br>0.20 moles/2 litres | One correct idea is given,<br>e.g. $K_c$ expression is<br>stated.<br>Or<br>Able to state <b>ONE</b> of the<br>expressions of either<br>[CO] = 0.20 moles or<br>[H <sub>2</sub> ] = 0.20 moles |  |  |
| CHE3.1.1.2  | 3.2a                                                        | 1    | Hydrofluoric acid                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                      |                                                                                                                                                                                                                    | One correct idea is given.                                                                                                                                                                    |  |  |
| CHE3.1.3.2  | 3.2b                                                        | 3    | $\mathcal{K}_{a} = [F^{-}] \cdot [H_{3}O^{+}] / [F]$ $F_{(a0)} + H_{2}O_{(A} \rightleftharpoons F^{-}_{(a0)} + H_{3}O^{+}_{(a0)}$                                                                                                                                                    | Two or more correct ideas are given and linked e.g.                                                                                                                                                  | At least two<br>independent correct<br>ideas are given e.g.                                                                                                                                                        | One correct idea is given,<br>e.g. <i>K</i> <sub>a</sub> expression is<br>stated.                                                                                                             |  |  |

|             |         |      | Initial       0.60 M       0 M $^{\circ}$ 0 M         Change       -x       +x       +x         Equil.       0.60-x       x       x         7.1 × 10 <sup>-4</sup> = x.x / (0.60-x)       7.1 × 10 <sup>-4</sup> = x <sup>2</sup> / 0.60       (Assume that x is much smaller than 0.60 M, so that 0.60 M - x $\approx$ 0.60 M)         x = 0.0206 M = [H <sub>3</sub> O <sup>+</sup> ]     | $K_{a}$ expression is stated,<br>concentrations of species<br>are determined with the<br>relevant assumption and<br>used to determine the<br>[H <sub>3</sub> O <sup>+</sup> ]. | K <sub>a</sub> expression is stated<br>and reactant<br>concentrations of<br>species are<br>determined.                |                                                                                                                               |
|-------------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| CHE3.1.1.4  | 3.3     | 1    | The buffer region is labelled clearly e.g.<br>PH 6<br>4<br>0<br>0<br>4<br>8<br>12<br>12<br>10<br>12<br>10<br>12<br>10<br>12<br>10<br>12<br>10<br>12<br>10<br>12<br>10<br>10<br>12<br>10<br>12<br>10<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                       |                                                                                                                                                                                |                                                                                                                       | One correct idea is given.<br>Or buffer region is<br>correctly labeled.                                                       |
| CHE3.1.2.5  | 3.4     | 2    | [H <sup>+</sup> ] = Excess amount of HCl after neutralisation / total<br>volume of solution<br>= [(0.025 L × 0.10 <i>M</i> HCl) – (0.015 L × 0.10 <i>M</i> NaOH)] /<br>(0.025 L + 0.015 L)<br>= (0.0025 mol – 0.0015 mol) / 0.040 L<br>= 0.025 mol/L<br>pH = -log [0.025] = 1.6                                                                                                             |                                                                                                                                                                                | At least two correct<br>ideas are given e.g.<br>excess HCI<br>concentration is<br>determined and pH is<br>calculated. | One correct idea is given,<br>e.g. excess HCl<br>concentration is<br>determined<br>Or<br>Correct formula for pH is<br>stated. |
| CHE3.2.1.1  | 3.5a    | 1    | It is the equilibrium constant for a solid substance dissolving in an aqueous solution.                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                       | One correct idea is given.                                                                                                    |
| CHE3.2.2.2  | 3.5b    | 2    | $Mg(OH)_{2 (s)} \rightleftharpoons Mg^{2+}_{(aq)} + 2OH^{-}_{(aq)}$ $K_{sp} = [Mg^{2+}].[OH]^{2}$                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                | At least two correct<br>ideas are given e.g.<br>equilibrium equation<br>and $K_{sp}$ expression are<br>stated.        | One correct idea is given,<br>e.g. equilibrium equation is<br>stated.                                                         |
| Strand 4: O | xidatio | n–Re | duction Reactions                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                |                                                                                                                       |                                                                                                                               |
| CHE4.1.2.2  | 4.1a    | 2    | It converts chemical energy to electrical energy through an electron transfer process between the anode and cathode in an spontaneous redox reaction.<br>OR<br>The anode will undergo oxidation and the cathode will undergo reduction. The two electrodes allow a flow of electrons that leave the metal of the anode and flow through the external circuit to the surface of the cathode. |                                                                                                                                                                                | At least two correct ideas are given.                                                                                 | One correct idea is given.                                                                                                    |

| CHE4.1.2.3                  | 4.1b      | 2 | $\begin{array}{l} Mg_{(s)} \to Mg^{2+}_{(aq)} + 2e^{-} \\ Ni^{2+}_{(aq)} + 2e^{-} \to Ni_{(s)} \end{array}$ $\begin{array}{l} Mg_{(s)} I Mg^{2+}_{(aq)} II Ni_{(s)} I Ni^{2+}_{(aq)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                                                    | At least two correct<br>ideas are given, e.g.<br>both half-cell reactions<br>are stated.                                                 | One correct idea is given,<br>e.g. one half-cell reaction<br>is stated.      |  |
|-----------------------------|-----------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Strand 5: Organic Chemistry |           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                          |                                                                              |  |
| CHE5.1.1.1                  | -<br>5.1a | 1 | Enantiomerism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                          | One correct idea is given.                                                   |  |
| CHE5.1.3.11                 | 5.1b      | 3 | <ul> <li>Butan-2-amine</li> <li>1. Identifying the functional group:</li> <li>The compound is an amine with single bonds between the carbon atoms. It will have a suffix of -amine.</li> <li>2. Finding the longest carbon chain:</li> <li>There are four carbon atoms in the longest chain. The prefix of the compound will be butan</li> <li>3. Number the carbon atoms in the longest chain</li> <li>The numbering is done to ensure the carbon with amine group has the lowest number, which is the second carbon (2).</li> <li>4. Combine the elements of the name into a single word. The name of the compound is butan-2-amine.</li> </ul> |                                                                                                                                                                                                     | At least two correct ideas<br>are given and linked, e.g.<br>IUPAC naming steps/rules<br>are logically stated in order<br>to arrive at the name of the<br>compound.                                                 | At least two correct<br>ideas are given, e.g.<br>IUPAC name and<br>naming steps/rules are<br>stated.                                     | One correct idea is given,<br>e.g. common or non-<br>IUPAC name stated.      |  |
|                             | 5 20      | 1 | Amido functional group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                          | One correct idea is given                                                    |  |
| CHE5.2.1.4                  | 5.2b      | 1 | A water molecule is removed/eliminated during the<br>reaction.<br>OR<br>It is called a condensation reaction.<br>OR<br>It undergoes step growth polymerisation.<br>OR<br>A peptide bond is formed.                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                          | One correct idea/<br>characteristic is given.                                |  |
| CHE5.2.2.11                 | 5.3       | 2 | $n \xrightarrow[H=0]{} - \xrightarrow[H=0]{} - \xrightarrow[H=0]{} - \xrightarrow[H=0]{} + n \xrightarrow[H=0]{} + \xrightarrow[H=0]{} + \xrightarrow[H=0]{} + \xrightarrow[H=0]{} + \xrightarrow[H=0]{} + (2n-1)H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                    | At least two correct<br>ideas are given, e.g.<br>products are identified<br>and equation is<br>balanced.                                 | One correct idea is given,<br>e.g. products are<br>identified.               |  |
| CHE5.2.4.1                  | 5.4       | 4 | The oxidation of alcohols is an important reaction in organic chemistry and everyday life. For example, secondary alcohols can be oxidised to give ketones.<br>$\begin{array}{c} OH \\ H_3CHCH_3 \end{array} \xrightarrow[0]{} OH \\ CH_3CHCH_3 \end{array} \xrightarrow[0]{} CH_3 \xrightarrow[-]{} CH_3 \\ \end{array}$                                                                                                                                                                                                                                                                                                                         | The response should have<br>correctly and clearly<br>described any one common<br>reaction of alcohols with<br>chemical equation, and<br>discussed the application of<br>the reaction to a real life | At least two correct ideas<br>are given, which are clearly<br>linked, e.g. one reaction of<br>alcohols is described with<br>reaction conditions and<br>product and mention of its<br>application to everyday life. | At least two correct<br>ideas are given, e.g.<br>one reaction of<br>alcohols is described<br>with reaction<br>conditions and<br>product. | Any one correct idea is<br>given, e.g. one reaction of<br>alcohol is stated. |  |

|             |      |   | In labs, secondary alcohols can be oxidised by heating<br>them with a solution of sodium or potassium dichromate<br>acidified with dilute sulphuric acid.<br>Alcohols and ketones are very common features in<br>biological molecules. Converting between these<br>compounds is a frequent event in many biological<br>pathways.<br>For example, enzyme-controlled oxidation reactions<br>provide the energy cells need to do useful work. One step<br>in the metabolism of carbohydrates involves the oxidation<br>of the secondary alcohol group in isocitric acid to a ketone<br>group:<br>$\begin{array}{c} CH_{2}-COOH & CH_{2}-COOH \\ CH-COOH & CH_{2}-COOH \\ HO-CH-COOH & CH_{2}-COH \\ CH_{2}-COOH \\ HO-CH-COOH & CH_{3} \end{array}$ | situation with a suitable<br>example. |                                                                                                     |                                                                                                                |
|-------------|------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| CHE5.2.1.1  | 5.5a | 1 | Aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                                     | One correct idea is given.                                                                                     |
| CHE5.2.1.2  | 5.5b | 1 | <ul><li> It is acidic in nature.</li><li> It has high boiling point.</li><li> It is soluble in water.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                                                                     | One correct idea/property is given.                                                                            |
| CHE5.2.2.6  | 5.5c | 2 | <ul> <li>Oxidising reagents such as potassium dichromate</li> <li>Presence of dilute sulphuric acid</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | At least two correct<br>ideas are given, e.g.<br>reagent and acidic<br>condition is<br>mentioned.   | Any one correct idea is given, e.g. reagent is mentioned.                                                      |
| CHE5.2.2.10 | 5.6  | 2 | Butanoic acid and ethanol<br>O<br>H<br>$CH_3CH_2CH_2 - C - OH$<br>$CH_3CH_2OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | At least two correct<br>ideas are given, e.g.,<br>both products are<br>drawn correctly.             | Any one correct idea is<br>given, e.g., one product is<br>drawn correctly (either<br>Butanoic Acid OR ethanol) |
| CHE5.1.2.2  | 5.7a | 2 | Many isomers are possible, e.g.:<br>O<br>H<br>$CH_3-C-CH_2-CH_2-CH_2-CH_3$<br>Constitutional isomer<br>OR<br>$H-C-CH_2-CH_2-CH_2-CH_3$<br>Functional group isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | At least two correct<br>ideas are given, e.g.<br>one structure of<br>isomer and the isomer<br>type. | Any one correct idea is<br>given, e.g. either one<br>structure of isomer or the<br>type of isomer.             |
| CHE5.2.2.7  | 5.7b | 2 | <ul> <li>Reagent could be LiAlH<sub>4</sub> or NaBH<sub>4</sub></li> <li>Product is a secondary alcohol:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | At least two correct<br>ideas given, e.g.<br>reagent and product                                    | Any one correct idea<br>given, e.g. reagent or<br>product                                                      |

|            |      |   | $CH CH_3 CH_3 - C - CH_2 - CH - CH_3 H$     |  |                                                                   |                                           |
|------------|------|---|---------------------------------------------|--|-------------------------------------------------------------------|-------------------------------------------|
| CHE5.2.2.5 | 5.7b | 2 | CH <sub>3</sub> CHBrCH <sub>3</sub><br>Heat |  | At least two correct<br>ideas given, e.g.<br>reactant and product | Any one correct idea given, e.g. reactant |