Pacific
Communitu
Communauté du Pacifique

EDUCATIONAL QUALITY AND ASSESSMENT PROGRAMME

Scoring

 Rubric 2021

South Pacific Form Seven Gertificate

© Educational Quality and Assessment Programme, 2021
3 Luke Street, Nabua, Private Mail Bag, Suva, Fiji.
Telephone: (679) 3370233 Fax: (679) 3370021
All rights reserved. No part of this publication may be reproduced by any means without the prior permission of the Educational Quality and Assessment Programme.

SLO	$\begin{gathered} \hline \text { Q. } \\ \text { No. } \end{gathered}$	SL	Evidence	Student Response Level			
				Extended Abstract 4	Relational 3	Multistructural 2	Unistructural 1
Strand 1: Atomic Structure, Bonding and Related Properties							
CHE1.1.1.1	1.1	1	C				C
CHE1.1.3.1	1.2	3	With the $[\mathrm{Ar}] 3 \mathrm{~d}^{4} 4 \mathrm{~s}^{2}$ configuration, the 3d orbital is partially filled while the $4 s$ is fully filled. With the $[\mathrm{Ar}] 3 d^{5} 4 s^{1}$ configuration, the 3d orbital is half filled while the 4 s orbital is also half filled. Since half-filled d orbitals have extra stability than partially filled d orbitals, Cr assumes the [Ar] $\mathbf{d}^{5} 4 s^{1}$ configuration to attain the extra stable state.		Two or more ideas are correctly given which are linked, as the example given in bold i.e. the stabilities of both electron configurations are mentioned and compared.	Two independent ideas are correctly given. For example, the stability of each electronic configuration is mentioned separately but not linked.	Any one correct idea is given. e.g. half-filled orbitals are more stable than partially filled orbitals.
CHE1.1.2.2	1.3	2	- The nuclear charge of an atom. - The shielding effect of electrons in an atom.			Two correct ideas/ factors are given.	One correct idea/factor is given.
CHE1.1.1.3	1.4a	1	Bent or 'V" shape				One correct idea is given.
CHE1.1.4.1	1.4b	4	Firstly, water and ethanol are both polar due to their bent and tetrahedral shapes, respectively. The polarity results in strong intermoleculer forces of attraction (hydrogen bonds) between water and ethanol molecules in their pure solutions. Furthermore, in pure form, water has open spaces between its molecules arising from its shape and hydrogen bonding. However, when the water and ethanol are mixed, hydrogen bonds between the water and ethanol also forms that draws the different molecules close together. The open space structure of liquid water is disrupted, and the empty space becomes less. The two different molecules pack closer together than in pure solution, resulting in a reduction of volume.	Two or more ideas are correctly given which are linked, and an important conclusion is derived, e.g. - the compounds form hydrogen bonds in between their molecules in their pure form, and - the two compounds form hydrogen bonds in between each other's molecules in the mixture. - This leads to disruption in the open space structure of water and closer packing of the molecules of the two compounds, - resulting in a reduction of volume.	Two or more ideas are correctly given which are linked, e.g. - the compounds form hydrogen bonds in between their molecules in their pure form, and - the two compounds form hydrogen bonds in between each other's molecules in the mixture. - This leads to disruption in the open space structure of water.	Two independent ideas are correctly given, e.g. - the compounds form hydrogen bonds in between their molecules in their pure form, and - the two compounds form hydrogen bonds in between each other's molecules in the mixture.	Any one correct idea is given, e.g. the compounds have hydrogen bonding between its molecules.
CHE1.2.1.3	1.5a	1	It is a positively charged particle.				One correct idea is given.
CHE1.2.1.1	1.5b	1	A process where the nucleus of an atom is split into two or more smaller nuclei.				One correct idea is given.
CHE1.2.3.3	1.5c	3	20.0 g to 10.0 g is one half-life. 10.0 g to 5.0 g is another half-life. 5.0 g to 2.5 g is another half-life. Therefore, total of 3 half-lives. $\text { Time }=245,000 \times 3=735,000 \text { years }$		Two correct ideas are given and linked e.g. the mass after each half-life is determined, three half-lives are determined as the time for decay to 2.5 g and the total time is calculated from	Two independent correct ideas are given, e.g. the mass after each half-life is determined and three half-lives are determined as the time for decay.	One correct idea is given, e.g. the mass after one half-life is determined.

				the number of half-lives and $\mathrm{t}_{1 / 2}$.		
CHE1.3.2.1	1.6a	2	- Shows variable oxidation states - Forms coloured ions or compounds - Forms stable complexes		Two ideas/ characteristics are correctly given.	One correct idea/ characteristic is given.
CHE1.3.1.1	1.6b	1	Iron or Fe			One correct idea is given.
CHE1.3.1.2	1.7	1	Tetraamminecopper(II) ion			One correct idea is given.
Strand 2: Energy Changes in Chemical and Physical Processes						
CHE2.1.1.1	2.1	1	C			One correct idea is given.
CHE2.1.1.2	2.2	1	Standard enthalpy of ionisation			One correct idea is given.
CHE2.1.1.3	2.3a	1	Enthalpy of combustion or combustion			One correct idea is given.
CHE2.1.2.3	2.3b	2			At least two correct ideas are given e.g. balanced equation with negative enthalpy change value. Or able to list down both the products and reactants correctly.	One correct idea is given, e.g. unbalanced equation with negative enthalpy change value. Or able to identify either the products or reactants correctly
CHE2.1.3.4	2.4	3	The heat or enthalpy of the reaction is calculated using Hess's Law: $\begin{aligned} & \Delta H_{\mathrm{rxn}}=\sum \Delta H_{\mathrm{f}} \text { (products) }-\sum \Delta H_{\mathrm{f}}^{\mathrm{f}} \text { (reactants) } \\ & -179.4 \mathrm{~kJ} / \mathrm{mol}^{2}=\Delta H_{\mathrm{f}}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{~s})-\left\{\left[2 \times \Delta H_{\mathrm{f}}^{\mathrm{f}} \mathrm{NH}_{3(\mathrm{~g})}\right]+\right. \\ & \left.\Delta H_{\mathrm{f}}^{\mathrm{o}} \mathrm{H}_{2} \mathrm{SO}_{4 \mathrm{aq})}\right\} \\ & -179.4 \mathrm{~kJ} / \mathrm{mol}^{2}=\Delta H_{\mathrm{f}}^{\mathrm{p}}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4(\mathrm{~s})}-\{[2(-45.9 \mathrm{~kJ} / \mathrm{mol})]+(- \\ & 909.3) \mathrm{kJ} \mathrm{~mol} \\ & \hline-1)\} \\ & \Delta H_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4(\mathrm{~s})}=-1180.5 \mathrm{~kJ} / \mathrm{mol} \end{aligned}$	Two or more correct ideas are given and linked e.g. Hess's law equation is stated and $\Delta H_{\mathrm{f}}^{\mathrm{f}}$ values are used for calculation after linking with the chemical equation.	At least two independent correct ideas are given e.g. Hess's law equation is stated and given $\Delta H_{f}^{D_{f}}$ values are used for calculation.	One correct idea is given, e.g. Hess's law equation is stated.
Strand 3: Aqueous Equilibrium Systems						
CHE3.1.1.1	3.1a	1	B			One correct idea is given.
CHE3.1.3.1	3.1b	3	$\begin{aligned} & K_{\mathrm{c}}=\left[\mathrm{CH}_{3} \mathrm{OH}\right] /[\mathrm{CO}] \cdot\left[\mathrm{H}_{2}\right]^{2} \\ & {[\mathrm{CO}]=0.20 \mathrm{moles} / 2 \text { litres }=0.10 \mathrm{~mol}} \\ & {\left[\mathrm{H}_{2}\right]=0.20 \mathrm{moles} / 2 \text { litres }=0.10 \mathrm{~mol}} \\ & 10.5=\left[\mathrm{CH}_{3} \mathrm{OH}\right] /(0.10)(0.10)^{2} \\ & {\left[\mathrm{CH}_{3} \mathrm{OH}\right]=0.105 \mathrm{M}} \end{aligned}$	Two or more correct ideas are given and linked e.g. K_{c} expression is stated, reactant concentrations are calculated and used to determine the $\left[\mathrm{H}_{3} \mathrm{OH}\right]$.	At least two independent correct ideas are given e.g. K_{c} expression is stated and reactant concentrations are calculated. Able to see the "DIVISION by 2 litres" 0.20 moles $/ 2$ litres	One correct idea is given, e.g. K_{c} expression is stated. Or Able to state ONE of the expressions of either [CO] $=0.20$ moles or $\left[\mathrm{H}_{2}\right]=0.20$ moles
CHE3.1.1.2	3.2a	1	Hydrofluoric acid			One correct idea is given.
CHE3.1.3.2	3.2b	3	$\begin{aligned} & K_{\mathrm{a}}=\left[\mathrm{F}^{-}\right] \cdot\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /[\mathrm{F}] \\ & \quad \mathrm{F}_{(\mathrm{aq)})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \rightleftharpoons \mathrm{F}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \end{aligned}$	Two or more correct ideas are given and linked e.g.	At least two independent correct ideas are given e.g.	One correct idea is given, e.g. K_{a} expression is stated.

CHE4.1.2.3	4.1b	2	$\begin{aligned} & \mathrm{Mg}_{(s)} \rightarrow \mathrm{Mg}^{2+}{ }_{(a q)}+2 \mathrm{e}^{-} \\ & \mathrm{Ni}^{2+}{ }_{(a q)}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}_{(s)} \\ & \mathrm{Mg}_{(s)} \mathrm{IMg}^{2+}{ }_{(a q)} \mathrm{II} \mathrm{Ni}_{(s)} \backslash \mathrm{Ni}^{2+}{ }_{\text {(aq) }} \end{aligned}$			At least two correct ideas are given, e.g. both half-cell reactions are stated.	One correct idea is given, e.g. one half-cell reaction is stated.
Strand 5: Organic Chemistry							
CHE5.1.1.1	5.1a	1	Enantiomerism				One correct idea is given.
CHE5.1.3.11	5.1b	3	Butan-2-amine 1. Identifying the functional group: The compound is an amine with single bonds between the carbon atoms. It will have a suffix of -amine. 2. Finding the longest carbon chain: There are four carbon atoms in the longest chain. The prefix of the compound will be butan-. 3. Number the carbon atoms in the longest chain The numbering is done to ensure the carbon with amine group has the lowest number, which is the second carbon (2). 4. Combine the elements of the name into a single word. The name of the compound is butan-2-amine.		At least two correct ideas are given and linked, e.g. IUPAC naming steps/rules are logically stated in order to arrive at the name of the compound.	At least two correct ideas are given, e.g. IUPAC name and naming steps/rules are stated.	One correct idea is given, e.g. common or nonIUPAC name stated.
CHE5.2.1.3	5.2a	1	Amide functional group				One correct idea is given.
CHE5.2.1.4	5.2b	1	A water molecule is removed/eliminated during the reaction. OR It is called a condensation reaction. OR It undergoes step growth polymerisation. OR A peptide bond is formed.				One correct idea/ characteristic is given.
CHE5.2.2.11	5.3	2				At least two correct ideas are given, e.g. products are identified and equation is balanced.	One correct idea is given, e.g. products are identified.
CHE5.2.4.1	5.4	4	The oxidation of alcohols is an important reaction in organic chemistry and everyday life. For example, secondary alcohols can be oxidised to give ketones.	The response should have correctly and clearly described any one common reaction of alcohols with chemical equation, and discussed the application of the reaction to a real life	At least two correct ideas are given, which are clearly linked, e.g. one reaction of alcohols is described with reaction conditions and product and mention of its application to everyday life.	At least two correct ideas are given, e.g. one reaction of alcohols is described with reaction conditions and product.	Any one correct idea is given, e.g. one reaction of alcohol is stated.

