Student Personal Identification Number
\square

South Pacific Form Seven Certificate MATHEMATICS WITH CALCULUS

2022

QUESTION and ANSWER BOOKLET

Time allowed: Three hours
(An extra 10 minutes is allowed for reading this paper.)

INSTRUCTIONS

1. Write your Student Personal Identification Number (SPIN) in the space provided on the top righthand corner of this page.
2. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
3. Show all your working. Unless otherwise stated, numerical answers correct to three significant figures will be adequate.
4. If you need more space for answers, ask the Supervisor for extra paper. Write your SPIN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

Major Learning Outcomes (Achievement Standards)	Skill Level \& Number of Questions			Weight/	
	Level 1 Uni- structural	Level 2 Multi- structural	Level 3 Relational		Time
Strand 1: Algebra Apply algebraic techniques to real and complex numbers.	14	1	-	1	20% 60 min
Strand 2: Trigonometry Use and manipulate trigonometric functions and expressions.	3	2	1	-	10% 30 min
Strand 3: Differentiation Demonstrate knowledge of advanced concepts and techniques of differentiation.	1	3	-	2	15% 45 min
Strand 4: Integration Demonstrate knowledge of advanced concepts and techniques of integration.	2	3	1	1	15% 45 min
TOTAL	$\mathbf{2 0}$	$\mathbf{9}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6 0 \%}$ $\mathbf{1 8 0} \mathrm{min}$

Check that this booklet contains pages 2-23 in the correct order and that none of these pages are blank.
A four-page booklet (No. 108/2) containing mathematical formulae and tables is provided.

STRAND 1:
ALGEBRA
1.1 Simplify $\frac{2 y}{3}-\frac{y}{4}$

1	
0	
$N R$	

1.2 Solve this pair of simultaneous equations:

$$
\begin{gathered}
2 x-y=7 \\
3 x+y=13
\end{gathered}
$$

Unistructural

1	
0	
$N R$	

1.7 Simplify $3 \log 4-2 \log 2$ by writing as a \log of a single number.
\qquad

Unistructural	
1	
0	
NR	

1.8 Determine the remainder when $2 x^{3}+5 x-6$ is divided by $x-1$
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow

Unistructural	
1	
0	
NR	

1.13 Given below are two complex numbers:

$$
z=2 i \quad \text { and } \quad w=(3+i)
$$

a. Find $z \times w$
\qquad

1	
0	
$N R$	

b. Plot the complex number $z=2 i$ on the Argand diagram given below.

Unistructural	
1	
0	
$N R$	

1.14 Use the factor theorem to factorise $x^{3}+2 x^{2}-5 x-6$ completely.
\qquad
\longrightarrow
\longrightarrow
\longrightarrow
\longrightarrow
\longrightarrow
\qquad
\longrightarrow
\qquad
\qquad

Multistructural	
2	
1	
0	
NR	

STRAND 2:

2.6 | Two people swing jump ropes, as shown in the diagram below. The highest |
| :--- |
| point of the middle of each rope is 75 inches above the ground, and the |
| lowest point is 3 inches. The rope makes 2 revolutions per second. |

STRAND 3:
 DIFFERENTIATION

Find the value(s) of x for which $g(x)$ is discontinuous?
3.1 The graph of a piece-wise function, $g(x)$ is given below. Use the graph to answer the question that follows.
3.2 Evaluate $\lim _{x \rightarrow-3} \frac{x^{2}+5 x+6}{x+3}$
\qquad

2	
1	
0	
$N R$	

Find the initial acceleration of the particle.
\qquad
\longrightarrow
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\longrightarrow

Extended Abstract	
4	
3	
2	
1	
0	
NR	

If this cone is filled with water at a constant rate of $60 \mathrm{~cm}^{3}$ per second, at what rate will the water level rise when $h=3 \mathrm{~cm}$?
[Volume of a cone: $V=\frac{1}{3} \pi r^{2} h$]
\qquad
\qquad \longrightarrow
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad

Extended Abstract	
4	
3	
2	
1	
0	
NR	

\square

STRAND 4:
INTEGRATION
Assessor's use only

4.6 The Covid-19 virus spreads through a town of 12000 people at a rate proportional to the number of people infected by the virus, which can be shown mathematically by the expression:

$$
\frac{d N}{d t} \alpha N
$$

whereby \boldsymbol{N} is the number of people infected and \boldsymbol{t} is the time in days.

Initially one person has the virus. If half the population is infected after 10 days, when will three-quarters of the population be infected?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\longrightarrow

Extended Abstract	
4	
3	
2	
1	
0	
$N R$	

Extra blank page (if needed)

THE END

