



**Student Personal Identification Number** 

# South Pacific Form Seven Certificate

# MATHEMATICS WITH STATISTICS 2022

# **QUESTION and ANSWER BOOKLET**

Time allowed: Three hours

(An extra 10 minutes is allowed for reading this paper.)

#### INSTRUCTIONS

- 1. Write your **Student Personal Identification Number (SPIN)** in the space provided on the top right-hand corner of this page.
- 2. Answer **ALL QUESTIONS**. Write your answers in the spaces provided in this booklet. For **Multiple Choice Questions**, circle the letter that represents the **BEST** answer.
- **3.** Show all your working. Unless otherwise stated, numerical answers correct to **three significant figures** will be adequate.
- 4. If you need more space for answers, ask the Supervisor for extra paper. Write your SPIN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

|                                                                                                                                                                                     | Skill Level & Number of Questions |                                 |                       |                                 |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|-----------------------|---------------------------------|-----------------|
| Major Learning Outcomes<br>(Achievement Standards)                                                                                                                                  | Level 1<br>Uni-<br>structural     | Level 2<br>Multi-<br>structural | Level 3<br>Relational | Level 4<br>Extended<br>Abstract | Weight/<br>Time |
| <b>Strand 1: Probability</b><br>Develop knowledge and skills related<br>to probability in order to solve<br>problems and to investigate situations<br>involving elements of chance. | 6                                 | 2                               | 2                     | 1                               | 20%<br>60 min   |
| Strand 2: Modelling Using<br>Graphical Methods<br>Model situations using graphical<br>methods in order to solve problems.                                                           | 6                                 | 4                               | 1                     | 0                               | 17%<br>51 min   |
| <b>Strand 3: Statistical Investigations</b><br>Carry out statistical investigations and<br>understand statistical processes.                                                        | 3                                 | 2                               | 1                     | 0                               | 10%<br>30 min   |
| Strand 4: Numerical and Algebraic<br>Methods<br>Use numeric and algebraic methods<br>to solve problems.                                                                             | 2                                 | 2                               | 1                     | 1                               | 13%<br>39 min   |
| TOTAL                                                                                                                                                                               | 17                                | 10                              | 5                     | 2                               | 60%<br>180 min  |

Check that this booklet contains pages 2–17 in the correct order and that none of these pages are blank.

HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

## STRAND 1: PROBABILITY

|     |                                                                                                                     | Assessor's use of |
|-----|---------------------------------------------------------------------------------------------------------------------|-------------------|
| 1.1 | A fair die is rolled in a game of snakes and ladders.                                                               |                   |
|     | Which of the following represents the outcome of the event: 'the result is an <b>even</b> number'?                  |                   |
|     | A. {1, 3, 5}                                                                                                        |                   |
|     | B. {2, 4, 6}                                                                                                        | Unistructural     |
|     | C. {1, 2, 4, 6}                                                                                                     | 0                 |
|     | D. {1, 2, 3, 4, 5, 6}                                                                                               | NR                |
| 1.2 | Define the term <b>complementary events</b> .                                                                       |                   |
|     |                                                                                                                     | Unistructural     |
|     |                                                                                                                     | 1                 |
|     |                                                                                                                     | NR                |
|     |                                                                                                                     |                   |
|     | What is the probability that a randomly selected committee has <b>at least</b> two of each gender in the committee? |                   |
|     |                                                                                                                     | Relational        |
|     |                                                                                                                     | 3                 |
|     |                                                                                                                     | 2                 |
|     |                                                                                                                     | 0                 |
|     |                                                                                                                     | NR                |
|     |                                                                                                                     |                   |

| 1.4 | A table with all possible values of a random variable and its corresponding probabilities is called                                                    |         | <b>·</b> |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
|     | A. variance                                                                                                                                            |         |          |
|     | B. expected value                                                                                                                                      | Unistru | ictural  |
|     | C. standard deviation                                                                                                                                  | 0       |          |
|     | D. probability distribution                                                                                                                            | NR      |          |
| 1.5 | The binomial distribution, normal distribution and Poisson distribution have parameters.                                                               |         |          |
|     | Define the term <b>parameters</b> .                                                                                                                    |         |          |
|     |                                                                                                                                                        | Unistru | uctural  |
|     |                                                                                                                                                        | 1       |          |
|     |                                                                                                                                                        | 0       |          |
|     |                                                                                                                                                        | NR      |          |
|     | distribution. If the average number of visitors per minute is 6, what is the probability that there are <b>less than three</b> visitors in one minute? |         |          |
|     |                                                                                                                                                        | Relat   | ional    |
|     |                                                                                                                                                        | 3       |          |
|     |                                                                                                                                                        | 2       |          |
|     |                                                                                                                                                        | 1       |          |
|     |                                                                                                                                                        |         |          |
|     |                                                                                                                                                        |         |          |

Assessor's use only

| 1.7  | State one featur        | e of normal   | distribution |                                 |                                     |                   |         |          |
|------|-------------------------|---------------|--------------|---------------------------------|-------------------------------------|-------------------|---------|----------|
|      |                         |               |              |                                 |                                     |                   | Unistr  | uctural  |
|      |                         |               |              |                                 |                                     |                   | 1       |          |
|      |                         |               |              |                                 |                                     |                   | 0       |          |
|      |                         |               |              |                                 |                                     |                   | NR      |          |
|      |                         |               |              |                                 |                                     |                   |         |          |
| 1.8a | Use the information     | ation below   | to answer    | <b>questions</b><br>te random v | <b>1.8a and 1.8</b><br>ariable X ha | <b>3b.</b><br>s a |         |          |
|      | probability distril     | bution as she | own in the t | able.                           |                                     |                   |         |          |
|      | X                       | 6             | 7            | 8                               | 9                                   | 10                |         |          |
|      | P(X)                    | 0.2           | 0.2          | 0.3                             | 0.2                                 | k                 |         |          |
|      | Find the value o        | f k.          |              | I                               |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   | Multist | ructural |
|      |                         |               |              |                                 |                                     |                   | 2       |          |
|      |                         |               |              |                                 |                                     |                   | 1       |          |
|      |                         |               |              |                                 |                                     |                   | 0       |          |
|      |                         |               |              |                                 |                                     |                   | NR      |          |
|      |                         |               |              |                                 |                                     |                   |         | 1        |
| 1.8b | Calculate the <b>va</b> | riance of X.  |              |                                 |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   | ·       |          |
|      |                         |               |              |                                 |                                     |                   | Multist | ructural |
|      |                         |               |              |                                 |                                     |                   | 2       |          |
|      |                         |               |              |                                 |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   |         |          |
|      |                         |               |              |                                 |                                     |                   |         |          |

| 1.9  | A and B are independent events with $P(A) = 0.3$ and $P(B) = 0.2$ .<br>Find $P(A \cup B)$ .                                                                                                                                                |          |          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
|      |                                                                                                                                                                                                                                            | Multistr | ructural |
|      |                                                                                                                                                                                                                                            | 2        |          |
|      |                                                                                                                                                                                                                                            | 1        |          |
|      |                                                                                                                                                                                                                                            | 0        |          |
|      |                                                                                                                                                                                                                                            | NR       |          |
| 1.10 | The amount of weight lost by people on a special diet is normally distributed with a mean of 8 kg and a standard deviation of 3.5 kg. If 1500 people were on this diet, how many are expected to lose weights between 6.95 kg and 10.8 kg? |          |          |
|      |                                                                                                                                                                                                                                            | Exter    | nded     |
|      |                                                                                                                                                                                                                                            | 4        | act      |
|      |                                                                                                                                                                                                                                            | 3        |          |
|      |                                                                                                                                                                                                                                            | 2        |          |
|      |                                                                                                                                                                                                                                            | 1        |          |
|      |                                                                                                                                                                                                                                            | 0        |          |
|      |                                                                                                                                                                                                                                            | NR       |          |

## STRAND 2: MODELLING USING GRAPHICAL METHODS

|     |                                                            | Assessor's use only |
|-----|------------------------------------------------------------|---------------------|
| 2.1 | State <b>one</b> feature of a linear function.             | Unistructural       |
|     |                                                            | 1                   |
|     |                                                            | 0                   |
|     |                                                            | NR                  |
| 2.2 | A function can be either continuous or discontinuous.      |                     |
|     | State <b>one</b> property of discontinuous functions.      | Unistructural       |
|     |                                                            |                     |
|     |                                                            |                     |
|     |                                                            | NR                  |
|     |                                                            |                     |
| 2.3 | An exponential function is given as $g(x) = 2(3)^x$ .      |                     |
|     | Identify the y-intercept (initial value) of the function.  |                     |
|     |                                                            |                     |
|     |                                                            | Unistructurai       |
|     |                                                            |                     |
|     |                                                            | NR                  |
|     |                                                            |                     |
| 2.4 | The graph of a piece-wise function, $f(x)$ is shown below. |                     |
|     | For what values of $x$ is the function discontinuous?      | Multistructural     |
|     |                                                            | 2                   |
|     |                                                            | 1                   |
|     |                                                            | 0                   |
|     |                                                            | NR                  |

| x                        | 0    | 10   | 20    | 30    |           |
|--------------------------|------|------|-------|-------|-----------|
| у                        | 2.30 | 5.97 | 15.47 | 40.13 |           |
| $Y = \log\left(y\right)$ | 0.36 | 0.78 | 1.19  | 1.60  |           |
|                          |      |      |       |       |           |
|                          |      |      |       |       |           |
|                          |      |      |       |       | Rela      |
|                          |      |      |       |       | Rela<br>3 |



| 2.8 | Solve $e^{x-2} = 12$ using the laws of natural logarithm. |         |          |
|-----|-----------------------------------------------------------|---------|----------|
|     |                                                           | Multist | ructural |
|     |                                                           | 2       |          |
|     |                                                           | 1       |          |
|     |                                                           | 0       |          |
|     |                                                           | NR      |          |
|     |                                                           |         |          |
| 2.9 | State <b>one</b> general feature of inequations.          |         |          |
|     |                                                           | Unistru | uctural  |
|     |                                                           | 1       |          |
|     |                                                           | 0       |          |
|     |                                                           | NR      |          |
|     |                                                           |         |          |



|     |                                                                                           | Assessor's use only |
|-----|-------------------------------------------------------------------------------------------|---------------------|
| 3.1 | State <b>one</b> general feature of scatter plots.                                        |                     |
|     |                                                                                           |                     |
|     |                                                                                           | Unistructural       |
|     |                                                                                           | 1                   |
|     |                                                                                           | 0                   |
|     |                                                                                           | NR                  |
|     |                                                                                           |                     |
| 3.2 | Sampling is one of the important factors that determines the accuracy of a survey result. |                     |
|     | State <b>one</b> method of sampling.                                                      |                     |
|     |                                                                                           |                     |
|     |                                                                                           |                     |
|     |                                                                                           |                     |
|     |                                                                                           |                     |
|     |                                                                                           | Unistructural       |
|     |                                                                                           | 1                   |
|     |                                                                                           | 0                   |
|     |                                                                                           | NR                  |
|     |                                                                                           |                     |
| 3.3 | Define <b>sample size</b> as used in statistics.                                          |                     |
|     |                                                                                           |                     |
|     |                                                                                           |                     |
|     |                                                                                           | Unistructural       |
|     |                                                                                           | 1                   |
|     |                                                                                           | 0                   |
|     |                                                                                           | NR                  |
|     |                                                                                           |                     |

### STRAND 3: STATISTICAL INVESTIGATIONS



| 3.5 | A survey of 400 airline passengers found that 238 were satisfied with the service provided by flight attendants.<br>Compute the point estimate of the proportion of passengers who are satisfied with the service from flight attendants.                                                                                                                                                                  |                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                            | Multistructural       2       1       0       NR |
| 3.6 | A random sample of 36 trees of a certain species from population <b>A</b> has a mean height of 175 cm with a sample standard deviation of 15 cm. A sample of 48 trees of the same species from population <b>B</b> has a mean height of 169 cm with a sample standard deviation of 12 cm.<br>Calculate the 95% confidence interval for the difference in means between populations <b>A</b> and <b>B</b> . |                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                            | Relational3210NR                                 |

| STRAND 4: | NUMERICAL AND ALGEBRAIC METHODS |
|-----------|---------------------------------|
|           |                                 |

|     |                                                                                                                          | Assessor' | s use only |
|-----|--------------------------------------------------------------------------------------------------------------------------|-----------|------------|
| 4.1 | Solving a system of linear equations yields three types of solutions. One type of solution is infinitely many solutions. |           |            |
|     | State <b>another</b> type of solution.                                                                                   |           |            |
|     |                                                                                                                          | Unistru   | ictural    |
|     |                                                                                                                          | - 1       |            |
|     |                                                                                                                          | 0         |            |
|     |                                                                                                                          | NR        |            |
|     |                                                                                                                          |           |            |
| 4.2 | State <b>one</b> disadvantage of using the Newton-Raphson method to approximate the root of a function.                  |           |            |
|     |                                                                                                                          | Unistru   | uctural    |
|     |                                                                                                                          | · 1       |            |
|     |                                                                                                                          | 0         |            |
|     |                                                                                                                          | NR        |            |
|     |                                                                                                                          |           |            |
| 4.3 | A system of linear equations is given below.                                                                             |           |            |
|     | 12x + ay = k                                                                                                             |           |            |
|     | 3x + y = 4                                                                                                               |           |            |
|     |                                                                                                                          |           |            |
|     | Determine the condition such that the above system of equations is consistent with infinitely many solutions.            |           |            |
|     |                                                                                                                          |           |            |
|     |                                                                                                                          |           |            |
|     |                                                                                                                          |           |            |
|     |                                                                                                                          |           |            |
|     |                                                                                                                          |           |            |
|     |                                                                                                                          | Multist   | ructural   |
|     |                                                                                                                          | 2         |            |
|     |                                                                                                                          | · 1       |            |
|     |                                                                                                                          | 0         |            |
|     |                                                                                                                          | NR        |            |
|     |                                                                                                                          |           |            |

Assessor's use only



| 4.5 | A fishing company catches a total of 120 fish on a particular night. The fish are of three types: <b>A</b> , <b>B</b> and <b>C</b> . Type <b>A</b> has an average weight of 3 kg, type <b>B</b> has an average weight of 5 kg and type <b>C</b> has an average weight of 6.5 kg. Type <b>A</b> sells on average for \$3 per fish, type <b>B</b> for \$8 and type <b>C</b> for \$10.50. The total weight of fish caught is 513 kg and the total value of fish caught is \$715. Let: <i>x</i> = the number of type <b>A</b> caught; <i>y</i> = the number of type <b>B</b> caught. Write down a system of linear simultaneous equations that represent this information. <b>DO NOT ATTEMPT TO SOLVE THE SYSTEM</b> . |            |   |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|--|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |   |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |   |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |   |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relational |   |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3          |   |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2          |   |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1          |   |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0          |   |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NR         |   |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | _ |  |

|   |                                                                              |                  |                  |                     |      | Assessor's use                         |  |
|---|------------------------------------------------------------------------------|------------------|------------------|---------------------|------|----------------------------------------|--|
| 6 | A function is give                                                           | en as $f(x) = x$ | $x^3 + 3x - 3$ . |                     |      |                                        |  |
|   | Using $[0.5, 1]$ as the starting interval, calculate seven iterations of the |                  |                  |                     |      |                                        |  |
|   | Disection method to solve the equation $f(x) = 0$ .                          |                  |                  |                     |      |                                        |  |
|   | Fill in the table to find the value of the root to <b>2 decimal places</b> . |                  |                  |                     |      |                                        |  |
|   | Iterations                                                                   | а                | b                | $c = \frac{a+b}{2}$ | f(c) |                                        |  |
|   | 1                                                                            | 0.5              | 1                |                     |      |                                        |  |
|   | 2                                                                            |                  |                  |                     |      |                                        |  |
|   | 3                                                                            |                  |                  |                     |      |                                        |  |
|   | 4                                                                            |                  |                  |                     |      | _                                      |  |
|   | 5                                                                            |                  |                  |                     |      | _                                      |  |
|   | 7                                                                            |                  |                  |                     |      | _                                      |  |
|   | ,                                                                            |                  |                  |                     |      |                                        |  |
|   |                                                                              |                  |                  |                     |      |                                        |  |
|   |                                                                              |                  |                  |                     |      |                                        |  |
|   |                                                                              |                  |                  |                     |      | _                                      |  |
|   |                                                                              |                  |                  |                     |      | _                                      |  |
|   |                                                                              |                  |                  |                     |      | _                                      |  |
|   |                                                                              |                  |                  |                     |      | _                                      |  |
|   |                                                                              |                  |                  |                     |      | _                                      |  |
|   |                                                                              |                  |                  |                     |      | _                                      |  |
|   |                                                                              |                  |                  |                     |      |                                        |  |
|   |                                                                              |                  |                  |                     |      | - Abstract                             |  |
|   |                                                                              |                  |                  |                     |      | $-\begin{vmatrix} 4\\ 3 \end{vmatrix}$ |  |
|   |                                                                              |                  |                  |                     |      | 2                                      |  |
|   |                                                                              |                  |                  |                     |      |                                        |  |
|   |                                                                              |                  |                  |                     |      |                                        |  |
|   |                                                                              |                  |                  |                     |      |                                        |  |