MARKER CODE

Student Personal Identification Number

South Pacific Form Seven Certificate

CHEMISTRY

2022 QUESTION and ANSWER BOOKLET

Time allowed: Three hours

(An extra 10 minutes is allowed for reading this paper.)

INSTRUCTIONS

- 1. Write your **Student Personal Identification Number (SPIN)** in the space provided on the top right-hand corner of this page.
- 2. Answer **ALL QUESTIONS**. Write your answers in the spaces provided in this booklet. For **Multiple Choice Questions**, circle the letter that represents the **BEST** answer.
- 3. If you need more space for answers, ask the Supervisor for extra paper. Write your SPIN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

	Skill L	Skill Level & Number of Questions			
Major Learning Outcomes	Level 1	Level 2	Level 3	Level 4	Weight/
(Achievement Standards)	Uni-	Multi-	Relational	Extended	Time
	structural	structural		Abstract	
Strand 1: Atomic Structure, Bonding and Related Properties					20%
Interpret information about selected	5	1	3	1	51 min
properties of elements and compounds in					
relation to atomic structure.					
Strand 2: Energy Changes in Chemical and Physical Processes Use thermochemical data to determine energy changes in chemical and physical processes.	3	1	1	-	8% 21 min
Strand 3: Aqueous Equilibrium Systems Relate the properties of aqueous solutions to the nature and concentration of dissolved species.	5	3	1	-	14% 36 min
Strand 4: Oxidation–Reduction Reactions Apply oxidation–reduction principles to electrochemical cells and compare the relative strength of oxidants and reductants, and deduce the direction of spontaneous reactions.	-	2	-	-	4% 10 min
Strand 5: Organic Chemistry Use information about the structure and reactions of organic molecules to solve problems in organic chemistry.	5	6	1	1	24% 62 min
TOTAL	18	13	6	2	70% 180 min

Check that this booklet contains pages 2–17 in the correct order and that none of these pages are blank. HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

1.1 Atomic Structure and Bonding Assessor's use only 1.1a The ground state electronic configuration of iron (Fe, Atomic No. = 26) is represented as _ Unistructural A. 1s²2s²2p⁶3s²3p⁶3d⁶ 1 B. 1s²2s²2p⁶3s²3p⁶3d⁸ 0 C. 1s²2s²2p⁶3s²3p⁶4s¹3d⁷ NR D. 1s²2s²2p⁶3s²3p⁶4s²3d⁶ 1.1b According to the Valence Shell Electron Pair Repulsion (VSEPR) *Theory, the repulsion between valence electron pairs in the outer* shell of the central atom determines the shape of the molecule. Which of the following, regarding repulsive interaction of electron pairs, is correct? Unistructural A. Lone pair-Lone pair is greater than Lone pair-Bond pair 1 B. Lone pair-Lone pair is less than Bond pair-Bond pair 0 C. Lone pair-Bond pair is greater than Lone pair-Lone pair NR D. Lone pair-Bond pair is less than Bond pair-Bond pair 1.1c The shape of the ammonia (NH₃) molecule is shown below. . Ν H Explain how the polarity of ammonia is determined by its shape. You may use diagrams to support your response.

STRAND 1: ATOMIC STRUCTURE, BONDING AND RELATED PROPERTIES

Assessor's use only

	Dalati	
	Relati	onai
	2	
	1	
	0	
	NR	

1.2	Nucl	ear Chemistry	,					
1.2a	Defin	e fusion reactio	on.				Unistru	uctural
							1	
						[0	
						— [NR	
1.2b	Com	plete the followin	g equation for	the beta (1^0e) dec	ay of carbon-14.		Unistru	uctural
							1	
			$^{14}_{6}C \rightarrow$	+ _	⁰ 1e		0	
			0		1		NR	
1.2c	Radio partio	bactive substanc cles and gamma	es give off thre a rays , as shov	e types of radiation vn in the table belo	n; alpha particles , l w.	beta		
		Туре	Symbol	Mass number	Charge			
		Alpha particle	$^{4}_{2}$ He or α	4	+2			
		Beta particle	$_{-1}^{0}$ e or β	0	-1			
		Gamma ray	γ	0	0			
	<u></u>					[Exten Abst	nded ract
							4	
							3	
							2	
	<u> </u>						1	
	<u></u>						0	
							NR	

1.3	Transition Meta	als			Assessor's	s use only
	Use the informat	tion below to answe	r questions 1.3a and $ m ^{\prime}$	1.3b.		
	The table below gives some examples of coloured complexes formed by copper (Cu).					
		Complex	Colour of Solution			
		[CuCl ₄] ²⁻	Green			
		[Cu(H ₂ O) ₆] ²⁺	Light blue			
		[Cu(NH ₃) ₄] ²⁺	Deep blue			
1.3a	Name [CuCl₄]²- u	sing the IUPAC Nome	enclature System.		Unistru	ictural
					1	
					0	
					NR	
1.3b	List two factors th	nat enable Cu to form	coloured complexes.			
					Multistr	uctural
					2	
					1	
					0	
					NR	
1.3c	During an experin (NH ₃) solution to a After noting the fo to add more drops obtained. Explain the stude	nent, a student addec a test tube containing ormation of a light blue s of the ammonia solu nt's observations usir	a few drops of concen copper(II) sulfate, CuS e precipitate, the studer ution until a clear deep ng balanced chemical e	trated ammonia 604, solution. In then proceeded blue solution was quations.		
					Relat	ional
					3	
					2	
					1	
					0	
					NR	

2.1	Thermochemical Principles and Enthalpy Change	Assessor's use only
2.1a	The amount of energy needed for one gram of a solid to melt without any change in temperature is known as enthalpy of A. fusion B. reaction C. solution D. neutralisation	Unistructural 1 0 NR
2.1b	Which of the following shows the chemical reaction for the standard enthalpy of formation of liquid water, $H_2O_{(\ell)}$? A. $H_2O_{(g)} \rightarrow H_2O_{(\ell)}$ B. $H_2O_{(s)} \rightarrow H_2O_{(\ell)}$ C. $\frac{1}{2}O_{2(g)} + H_{2(g)} \rightarrow H_2O_{(\ell)}$ D. $O_{2(g)} + 2H_{2(g)} \rightarrow 2H_2O_{(\ell)}$	Unistructural 1 0 NR
2.1c	 The amount of energy change in a reaction depends on the amount of bonds that are broken and formed. Which of the following statements is correct? A. Bond breaking is exothermic while bond forming is endothermic. B. Bond breaking is endothermic while bond forming is exothermic. C. Both bond breaking and bond forming are exothermic processes. D. Both bond breaking and bond forming are endothermic processes. 	Unistructural 1 0 NR
2.1d	The standard enthalpy of vaporisation, $\Delta_{vap}H^{\circ}$, of ethanol, C ₂ H ₅ OH, is 42.3 kJ mol ⁻¹ . Write a thermochemical equation for the $\Delta_{vap}H^{\circ}$ of ethanol.	Multistructural 2 1 0 NR

STRAND 2: ENERGY CHANGES IN CHEMICAL AND PHYSICAL PROCESSES

			Assessor's	s use only
2.1e	The enthalpy of combustion ($\Delta_c H$) of magnesium i equation:	s represented by the		
	$Mg_{(s)} + \frac{1}{2} O_{2(g)} \rightarrow MgO_{(s)}$	$\Delta_{\rm c}H=?$		
	This equation can be obtained by combining the f	ollowing three equations:		
	MgO _(s) + 2HCl _(aq) \rightarrow MgCl _{2 (aq)} + H ₂ O _(l)	$\Delta H = -74.66 \text{ kJ}$		
	Mg $_{(s)}$ + 2HCl $_{(aq)}$ \rightarrow MgCl _{2 (aq)} + H _{2 (g)}	∆ <i>H</i> = -427.99 kJ		
	$H_{2 (g)} + \frac{1}{2}O_{2 (g)} \rightarrow H_2O_{(\ell)}$	$\Delta H = -285.50 \text{ kJ}$		
	Using the above information and Hess's Law, calc combustion ($\Delta_c H$) of magnesium.	culate the enthalpy of		
			Relati	onal
			2	
	 		1	
			0	
			NR	

STRAND 3: AQUEOUS EQUILIBRIUM SYSTEMS

3.1	Equilibrium Principles, Acids and Bases	Assessor's use only
3.1a	A buffer is a solution that A. undergoes a large increase in pH upon the addition of a base B. undergoes a large decrease in pH upon the addition of an acid C. resists a change in pH upon the addition of an acid or base D. resists a change in volume upon the addition of an acid or base	Unistructural 1 0 NR
3.1b	Basic buffer solutions are commonly made from a weak base and one of its salts. In the laboratory, a student prepares a basic buffer solution by mixing together ammonia (NH ₃) solution and ammonium chloride (NH ₄ Cl) solution. Describe the action of this buffer when an acid such as HCl is added to this buffer solution.	Multistructural 2 1 0 NR
	Use the information below to answer questions 3.1c and 3.1d. Vinegar is essentially a dilute solution of ethanoic acid (CH ₃ COOH) in water. The equation for the dissociation of ethanoic acid in water can be represented as: CH ₃ COOH (aq) + H ₂ O (t) \rightleftharpoons CH ₃ COO ⁻ (aq) + H ₃ O ⁺ (aq)	
3.1c	 Which of the following best describes ethanoic acid? A. weak diprotic acid B. strong diprotic acid C. weak monoprotic acid D. strong monoprotic acid 	Unistructural 1 0 NR
3.1d	The concentration of ethanoic acid in vinegar is 0.667 mol L ⁻¹ . Calculate the pH of vinegar. Note that K_a of CH ₃ COOH is 1.8 × 10 ⁻⁵ .	

		Relat	ional
		3	
		2	
		1	
		0	
		NR	
3.1e	Sodium hydroxide (NaOH) and hydrochloric acid (HCI) are strong electrolytes.	Unistru	uctural
	In a titration of HCI with NaOH, what will be the pH at the equivalence point?	1	
		0	
		NR	
3.1f	Phosgene (COCl ₂), used in the manufacture of polyurethane plastics, is prepared from CO and Cl ₂ . $CO_{(0)} + Cl_{2(0)} \rightleftharpoons COCl_{2(0)}$		
	An equilibrium mixture at 395°C contains 0.012 mol 1^{-1} CO and 0.025 mol 1^{-1}		
	Cl_2 as well as $COCl_2$.		
	Calculate the concentration of COCl ₂ if K_c is 1.23 × 10 ³ at 395°C.		
		Multist	ructural
		2	
		1	
		0	
		NR	

Use the information below to answer questions 2 22-2 2c		
When calcium sulfate (CaSO ₄) is added to water, the net ionic equation for the resulting chemical equilibrium is as follows:		
$CaSO_{4 (s)} \rightleftharpoons Ca^{2+} (aq) + SO_{4}^{2-} (aq)$		
Since $CaSO_4$ is slightly soluble, most of the Ca^{2+} and SO_4^{2-} exist in the solid form of $CaSO_4$ at equilibrium. Furthermore, the Le Chatelier's Principle can be used for increasing or decreasing the solubility of $CaSO_4$.		
Define the term solubility .	Unistru	ictural
	1	
	0	
The solubility product constant (K_{sp}) of CaSO ₄ is 2.4 × 10° mol ² L ⁻² at 25°C. Calculate the molar solubility of CaSO ₄ at 25°C.	Multistr	uctural
	2	
	1	
	0	
	NR	
Suppose the soluble ionic compound, sodium sulfate (Na ₂ SO ₄), was added to the CaSO ₄ solution at equilibrium. State the effect of this addition on the solubility of CaSO ₄ .	Unistru 1 0 NR	ictural
	When calcium sulfate (CaSO₄) is added to water, the net ionic equation for the resulting chemical equilibrium is as follows: CaSO₄ (s) ≓ Ca ²⁺ (aq) + SO₄ ²⁻ (aq) Since CaSO₄ is slightly soluble, most of the Ca ²⁺ and SO₄ ²⁻ exist in the solid form of CaSO₄ at equilibrium. Furthermore, the Le Chatelier's Principle can be used for increasing or decreasing the solubility of CaSO₄. Define the term solubility.	When calcium sulfate (CaSO ₄) is added to water, the net ionic equation for the resulting chemical equilibrium is as follows: CaSO ₄ (s) \rightleftharpoons Ca ²⁺ (sq) + SO ₄ ²⁻ (sq) Since CaSO ₄ is slightly soluble, most of the Ca ²⁺ and SO ₄ ²⁻ exist in the solid form of CaSO ₄ at equilibrium. Furthermore, the Le Chatelier's Principle can be used for increasing or decreasing the solubility of CaSO ₄ . Define the term solubility.

4.1	Redox Titrations and Electrochemical Cells	Assessor's use only
	Use the information below to answer questions 4.1a and 4.1b. The diagrams of two types of electrochemical cells, electrolytic cell and galvanic cell , are given below.	
	<figure></figure>	
4.1a	Using arrows, show the direction of electrons flow in the electrolytic cell and galvanic cell diagrams given above.	Multistructural 2 1 0 NR
4.1b	List examples of everyday application for: i. Galvanic cell	Multistructural
	ii. Electrolytic cell	1 0 NR

STRAND 4: OXIDATION-REDUCTION REACTIONS

STRAND 5: ORGANIC CHEMISTRY

5.1	Structure and Isomerism	Assessor's	use only
	Use the information below to answer questions 5.1a–5.1c.		
	The condensed structural formula of a compound, A, is given below. There are several isomers possible for this compound.		
	$CH_{3}-CH_{2}-CH-CH_{2}-OH$ CH_{3}		
	Compound A		
5.1a	Name Compound A using the IUPAC nomenclature system. In your response, show the steps used to obtain the name.		
		Relati	onal
	 	3	
		2	
		1	
		0	
		NR	
5.1b	Define the term isomer .	Unistru	ictural
	<u></u>	1	
		0	
		NR	

5.1c	Draw the structures of any two isomers of Compound A.		
		Multistr	ructural
		2	
		NR	
5.2	Reactions	Assessor's	s use only
	Use the information below to answer questions 5.2a–5.2c.		
	Compound A can be converted to Compound B using acidified potassium dichromate, $Cr_2O_7^{2-}/H^+$:		
	$Cr_2O_7^{2-}/H^+$		
	$CH_3-CH_2-CH-CH_2-OH \longrightarrow CH_3-CH_2-CH-C'$		
	сн ₃ сн ₃ он		
	Compound A Compound B		
5.2a	Name the type of reaction shown above.	Unistru	uctural
		1	
		0	
		NR	
E Oh	Choice exactly a suitable response that each be used in place of $Cr \cap \frac{2}{2}$ (1) is the		
5.20	state another suitable reagent that can be used in place of $Cr_2O_7^2/H^2$ in the above reaction.	Unistru	uctural
		1	
		0	
		NR	
5.2c	Compound B can be further converted to an acyl chloride .		
	Complete the equation for this reaction below by indicating a suitable reagent that can be used and the structure of the acyl chloride formed.		
		Multistr	ructural
		2	
	CH_2-CH_2-CH-C'	1	
	CH ₃ OH	0	
		NR	

Assessor's use only

5.2f	Describe a laboratory test that can be used to distinguish between an aldehyde and a ketone. Your response should include the reagent required for the test and the expected observations.		
		Multist	ructural
		2	
		1	
		0	
		NR	
	Use the information below to answer questions 5.2g–5.2i.		
	Polyester is a type of polymer that is made of long chains of monomers. The formation of a polyester follows the same procedure as that of an ester, as shown in the diagram below.		
	$n \begin{bmatrix} O \\ O \\ C - CH_2 - CH_2 - CH_2 - CH_2 - C \end{bmatrix} = \begin{bmatrix} O \\ O - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 \end{bmatrix}$		
	Polyester		
5.2g	Identify the ester link in the polyester above by placing a circle around it.		uctural
		1	
		0	
		NR	
		L	
5.2h	Polyesters are examples of condensation polymers.		
	Define condensation polymerisation.	Unistru	uctural
		1	
		0	
5.2i	Draw the structures of the two molecules (monomers) that would form the above polyester.		
		Multistr	ructural
		2	
		1	
		0	
		NR	

	-	Assessor s	s use only
5.2j	The properties of aldehydes have led to their use in several important applications, which are beneficial to both the industry and society.		
	With an example, discuss aldehydes with respect to the following:		
	- Their functional group		
	- Their functional group		
	- One common reaction with the reagent and main product		
	- An everyday application		
		Exter	nded
		Abst	ract
		4	
		3	
		2	
		1	
		0	
		NK	
		1	