MARKER CODE

Student Personal Identification Number

South Pacific Form Seven Certificate

BIOLOGY 2022

QUESTION and ANSWER BOOKLET

Time allowed: Three hours

(An extra 10 minutes is allowed for reading this paper.)

INSTRUCTIONS

- 1. Write your **Student Personal Identification Number (SPIN)** in the space provided on the top right-hand corner of this page.
- 2. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- 3. If you need more space for answers, ask the Supervisor for extra paper. Write your SPIN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

	Skill Level & Number of Questions				
Major Learning Outcomes	Level 1	Level 2	Level 3	Level 4	Weight/
(Achievement Standards)	Uni-	Multi-	Relational	Extended	Time
	structural	structural		Abstract	
Strand 1: Animal Behaviour Demonstrate an understanding of biological concepts and processes relating animal behaviour to biotic and abiotic environmental factors and how the behaviour contributes to the organism's survival.	3	2	1	0	10% 30min
Strand 2: Gene Expression Describe, explain and discuss biological concepts and processes relating to gene expression.	7	3	1	1	20% 60 min
Strand 3: Biotechnology Applications Describe, explain and discuss biotechnology applications and the human needs and demands for the applications.	0	1	1	0	5% 15 min
Strand 4: Processes and Patterns of Evolution Describe, explain and discuss processes and patterns of evolution.	9	2	1	1	20% 60 min
Strand 5: Environmental Issues Demonstrate an understanding of biological concepts and processes relating to contemporary environmental issues.	0	1	1	0	5% 15 min
TOTAL	19	9	5	2	60% 180 min

Check that this booklet contains pages 2–17 in the correct order and that none of these pages are blank. HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION

	r	Assessor's use only
1.1a	The picture given below shows a pair of wood ducks.	
	Source: https://www.sciencedirect.com/	
	It is believed the male remains in this monogamous mating relationship because his chances of future reproduction are better than if he leaves.	Unistructural
	Define monogamous mating.	
		0
		NR
1.1b	Birds, like the wood ducks in question 1.1 above, are typical <i>k</i> -strategists.	
	List two features of <i>k</i> -strategists.	
		Multistructural
		2
		NR
1.2	Orthokinesis refers to the increased or decreased speed of movement of an organism in response to a stimulus. Woodlice, for example, change their speed of movement when exposed to high or low temperatures.	
	Source: https://courses.lumenlearning.com/boundless-biology/	
	Describe the adaptive value of orthokinesis to the woodlice.	Multistructural
		2
		1
		0

STRAND 1: ANIMAL BEHAVIOUR

now working towards eradicating African Tulip (an invasive species) that is aggressively outgrowing native tree species and threatening traditional agriculture and biodiversity conservation in the Waidina and Labasa catchments, while rapidly increasing in the Ba and Tuva catchments.	
Source: https://pasifika.news/2022/03/african-tulip-a-major-threat-to-biodiversity-in-fiji/	Unistr
Identify the type of relationship between species in the above context.	1
	0

STRAND 2: GENE EXPRESSION

Assessor's use only 2.1a In living organisms, the **genome** is found in the chromosomes. Unistructural Define genome. 1 0 NR 2.1b The diagram below shows a 'flat' section of the DNA molecule. Source: <u>www.http:/quizlet.com</u> Describe the structure of DNA. Multistructural 2 1 0 NR 2.2a Codons are found along the mRNA molecule. Unistructural Define **codon**. 1 0 NR The **mRNA molecule** is formed from the DNA inside the nucleus. 2.2b Unistructural State the function of the **mRNA molecule**. 1 0 NR

Assessor's use only 2.3 The diagram below shows a section of the genetic code. The Genetic Code С 11 A G AUU] ACU 1 AAU] AGU] U AUC | Ile AGC Ser AAC Asn C ACC Thr AAA AAG Lys ACA AGA Stop AUA A Met AUG ACG AGG Stop G GUU GCU] GAU] GGU U Asp GAC GUC GCC GGC C Gly Ala G Val GAA GAG Glu GGA A GUA GCA GUG GCG. GGG . G Adapted from: https://www.mun.ca/biology/scarr/MtDNA_code.html Describe the use of the genetic code to identify a STOP codon. Multistructural 2 1 0 NR Use the diagram below that shows a karyotype of an individual to answer questions 2.4a and 2.4b. 10.00 2 2 Out) 222 10 2 ų, 20 ž ă ŧ a 13 14 15 16 17 18 88 э 8 n 1 20 19 21 22 x Unistructural Source: https://www.researchgate.net/figure/ 1 2.4a Identify the condition that the individual with the above karyotype suffers 0 from. NR

2.4b	With reference to the karyotype, describe one common physical characteristic of this individual.	
		Multistructural
		2
		1
		0
		NR
2.5	The Salmonidae fish and the cotton <i>Gossypium hirsutum</i> are tetraploids. Define the term tetraploid .	Unistructural
		0 NR
	The diagram below shows a type of gene interaction called epistasis. Use the diagram to answer questions 2.6a and 2.6b.	
	Source: <u>https://courses.lumenlearning.com/</u>	Unistructural
2.6a	Define the term epistasis.	
		0
		NK

Discuss the effect of epistasis shown in the diagram above, where the phenotype ratio from the dihybrid cross is 9:3:4.	
	-
	_
	-
	-
	-
	-
	_
	_
	-
	-
	_
	-
	-
	_
	_
	-
	-
	_
	Extende
	Abstrac
	- 3
	- 2 - 1
	_ 0
	NR

STRAND 3: BIOTECHNOLOGY APPLICATIONS

	Assessor's use only
3.1 Scientists have long taken advantage of bacterial plasmids as tools transferring, manipulating and making copies of genes.	s for
Source: https://www.nature.com/scitable/definition/plasmid-plasmids-28/	
List the first two steps of using bacterial plasmids to produce multi copies of the desired gene.	iple
	Multistructural
	2
	1
	0
	Relational
	3
	2
	1
	0
	NR

STRAND 4: PROCESSES AND PATTERNS OF EVOLUTION

11	Define the phrase crossing ever when applied to constitute materials		
4.1	Define the phrase crossing over when applied to genetic materials.	Unistru	ictural
		1	
		0	
		NR	
4.2	There are basically two known types of cell division – meiosis and mitosis.		
	State one feature of meiosis.	Unistru	ictural
		1	
		0	
		NR	
4.3a	Mutation is a cause of genetic variation.		
	Describe how the process of mutation leads to the formation of new alleles.		
		Multistr	uctural
		2	
4.3b	Most mutations are generally not harmful. Some, however, can be harmful and may cause significant disruptions in a population.		
	Discuss the negative impact of mutation on a population, using a specific example.		

Assessor's use only

		Exter Abst	nded
		4	
		3	
		2	
		1	
		0	
		NR	
4.4a	Charles Darwin first proposed the process of natural selection and to date remains the key element of his theory of evolution.		
	Define natural selection .	Unistru	uctural
		1	
		0	
		NR	
4.4b	Outline two key points of the theory of natural selection as proposed by Darwin.		
		Multistr	uctural
		2	
		1	
		0	
		NR	

4 5a	Define the term fitness in relation to natural selection		
4.0U		Unistru	ctural
		1	
		0	
		NR	
1.5h			
4.50	In evolutionary biology, an example of fitness in nature would be that 'albino bullfrogs are highly likely to get eaten by predators before they reach reproductive age because they can't camouflage. Therefore, they don't often live long enough to produce offspring'.		
	Adapted from: <u>https://study.com/academy/lesson/biological-fitness-definition-lesson-quiz.html</u>		
	Explain how fitness contributes to frequency of alleles in the gene pool, using the example of albino bullfrogs.		
		Relati	onal
		3	
		2	
		1	
		0	
		NR	

-	1	ASSESSO	s use onij
4.6	Allele frequencies are important measures of genetic variation within a population.		
	Define the phrase allele frequency .	Unistru	uctural
		1	
		0	
		NR	
4.7	Study the diagram given below.		
	death Genetic drift		
	Source: <u>https://slideplayer.com/</u>		
	With reference to the choice discrementies a definition for genetic drift		
	with reference to the above diagram, write a definition for genetic drift.	Unistru	uctural
		1	
		0	
		NR	
4.8a	'The hybrid embryos of sheep and goats often fail to develop into mature individuals, dying in the early developmental stages before birth.' Source: <u>https://www.britannica.com/</u>		
		Unistru	uctural
	Identify the reproductive isolating mechanism described above.	1	
		0	
		NR	

4.8b	Define the phrase hybrid breakdown.		
		Unistru	uctural
		1	
		0	
		NR	
4.9	Study the diagram below showing pentadactyl limbs of several animals.	Unistri	uctural
	State one feature of the above structures.	1	
		0	
		NR	

STRAND 5: ENVIRONMENTAL ISSUES

		Assessor	's use only
5.1a	Climate change is a major environmental issue, much discussed in local and global platforms.		
	List two features of climate change.		
		Multist	ructural
		2	
		1	
		0 NR	
5.1b	The effects of climate change have caused devastation for many coastal communities.		
	Some adaptations to help mitigate these devastations include building a sea wall, relocation, improving drainage systems, and building better protected wells.		
	Explain why relocation would be the best adaptive strategy.		
		1	

	115565501 5	use only
		<u>use only</u>
	Relatio	onal
	3	
	NR	

THE END