MARKER CODE

Student Personal Identification Number

South Pacific Form Seven Certificate

MATHEMATICS WITH STATISTICS 2021

QUESTION and ANSWER BOOKLET

Time allowed: Three hours

(An extra 10 minutes is allowed for reading this paper.)

INSTRUCTIONS

Write your **Student Personal Identification Number (SPIN)** in the space provided on the top right-hand corner of this page.

Answer **ALL QUESTIONS**. Write your answers in the spaces provided in this booklet.

Show all working. Unless otherwise stated, numerical answers correct to **three significant figures** will be adequate.

If you need more space for answers, ask the Supervisor for extra paper. Write your SPIN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

	Ski	ll Level & Nun	nber of Questi	ons	
Major Learning Outcomes (Achievement Standards)	Level 1 Uni- structural	Level 2 Multi- structural	Level 3 Relational	Level 4 Extended Abstract	Weight/ Time
Strand 1: Probability Develop knowledge and skills related to probability in order to solve problems and to investigate situations involving elements of chance.	6	2	2	1	20% 60 min
Strand 2: Modelling Using Graphical Methods Model situations using graphical methods in order to solve problems.	6	4	1	0	17% 51 min
Strand 3: Statistical Investigations Carry out statistical investigations and understand statistical processes.	3	2	1	0	10% 30 min
Strand 4: Numerical and Algebraic Methods Use numeric and algebraic methods to solve problems.	2	2	1	1	13% 39 min
TOTAL	17	10	5	2	60% 180 min

Check that this booklet contains pages 2–17 in the correct order and that none of these pages are blank.

HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

STRAND 1: PROBABILITY

	For que	estion 1.1, circle the letter of the BEST answer.		
1.1	The set	t of all possible outcomes of an experiment is called		
	A.	a trial.		
	В.	an event.		uctural
	C.	a population.	1	
	D.	the sample space.	NR	
1.2	Define	the term independent events .		
			Unist	uctural
			1	
			0	
			NR	
		bbability that a person owns a mobile phone is 0.75, that a person		
	owns ai iPad is Draw a	n iPad is 0.25 and that a person owns both a mobile phone and an		
	owns ai iPad is Draw a	n iPad is 0.25 and that a person owns both a mobile phone and an 0.18. Venn diagram to find the probability that the person owns either a		
	owns ai iPad is Draw a	n iPad is 0.25 and that a person owns both a mobile phone and an 0.18. Venn diagram to find the probability that the person owns either a	Rela	tional
	owns ai iPad is Draw a	n iPad is 0.25 and that a person owns both a mobile phone and an 0.18. Venn diagram to find the probability that the person owns either a	3	ional
	owns ai iPad is Draw a	n iPad is 0.25 and that a person owns both a mobile phone and an 0.18. Venn diagram to find the probability that the person owns either a	3 2	ional
	owns ai iPad is Draw a	n iPad is 0.25 and that a person owns both a mobile phone and an 0.18. Venn diagram to find the probability that the person owns either a	3	tional

1.4a	State one property of a normal distribution.	
		Unistructural
		_ 1
		0
		NR
	For question 1.4b, circle the letter of the BEST answer.	
1.4b	A binomial distribution has two parameters. One of the parameters is the number of trials, n.	
	Which of the following is the other parameter?	
	A. the mean, μ	
	B. the standard deviation, σ .	Unistructural
	C. the probability of success, p.	0
	D. the probability of failure, q.	NR
	If five such seeds are planted, what is the probability that three or more seeds germinate?	
		Relational
		3
		- 2
		- 1
		- 0
		_ NR

	For q			·					
1.5a	A rand	dom variab	le that assur	mes only a	finite numbe	of values	is called a		
	Α.								
	В.	random v	ariable.					-	ructural
	C.	1							
	D.	continuou	is random va	ariable.				NR	
1.5b	Define	e the term s	standard de	viation.					
								Unist	ructural
								1	
								0	
								NR	
1.5c	A rand	dom variab X P(X)		bability dist	estions 1.50 tribution as s 3 0.2		e table. 5 0.1		
								Multis	tructural
								2	
								1	
								0	
								NR	

1.5d	Calculate the standard deviation of X.		
		Multistr 2	uctural
		1	
		0 NR	
1.6	The lifetime of a particular brand of television is normally distributed with a mean of 7.2 years and standard deviation of 2.2 years.		
	If the manufacturer is willing to replace 1.5% of all televisions due to early failure, what should be the guarantee period?		
		Exter	nded
		Abst 4	
		3	
		1	
		0 NR	

STRAND 2: MODELLING USING GRAPHICAL METHODS

		Assessor's use only
2.1	State one feature of a quadratic function.	Unistructural
		- 1
		0
		NR
		-
2.2	A function can be either continuous or discontinuous.	
	Define discontinuous function.	Unistructural
		- 1
		0
		NR
2.3a	State the general form of a power function.	
		Unistructural
		- 1
		0
		NR
2.3b	The graph of a piece-wise function, $f(x)$ is shown below. y	
	2 + • • • •	
	1+	
	$\longrightarrow x$	
	-1 0 1 2	
	Determine the value of $f(1) + 1$.	
	Determine the value of $f(1) + 1$.	Multistructural
		- 2
		- 1
		0
		NR

·		Assessor's use only
2.5a	Sketch the graph of $y = \left(\frac{1}{2}\right)^x$ clearly showing all relevant intercepts.	Assessor's use only
	$\begin{array}{c c} & & & \\ \hline & & \\$	Unistructural 1 0 NR
2.5b	Solve the equation 2 ^x = 32	
		Multistructural 2 1 0 NR

2.6a	A bacteria culture grows according to the equation $N = 10e^{1.5t}$ where N is the number of bacteria after <i>t</i> hours.	
	Calculate the time (in hours) when the number of bacteria reaches 100.	
		Multistructural
		2
		1
		0
		NR
2.6b	Define the term objective function as used in linear programming problems.	
		Unistructural
		1
		0
		NR

2.7a	Define the term vertex as used in a linear programming problem.	Unistru	uctural
		1	
		0	
		NR	
			<u> </u>
2.7b	A woman started making handmade paintings and cards to earn a living. She sells the painting for \$40 and the card for \$15. It takes 2 hours to complete 1 painting and 30 minutes to make a single card. She spends at most 15 hours a week on making paintings and cards and she should not make more than 10 paintings and cards in a week. She makes a profit of \$20 on each painting and \$10 on each card. Let: <i>x</i> = number of paintings; and <i>y</i> = number of cards Write down two constraints for the above situation.		
		Multist	ructural
		2	
		1	
		0	
		NR	

STRAND 3: STATISTICAL INVESTIGATIONS

		Assessor's use only
	For question 3.1a, circle the letter of the BEST answer.	
3.1a	The type of data that uses two sets of variables that can change is	
	called	
	A. bivariate.	
	B. univariate.	Unistructural
	C. dependent.	1
	D. independent.	0
		NR
3.1b	Pearson's correlation coefficient, r, is given as:	
	$\mathbf{r} = \frac{n(\sum xy) - \sum x \sum y}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}}$	
	$1 = \sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}$	
	State one property of the Pearson's correlation coefficient, r.	
		Unistructural
		0
		NR
3.2	State the central limit theorem as used in statistics.	
		Unistructural
		1
		0
		NR
L		1

	nination. The t students st es.											
	Hours studied	12	7	15	8	18	6	9	11			
	Midterm score	87	78	97	80	95	57	74	67			
Write	Pearson's co e a concludir correlation co	ng stat	ement						en value	e of		
											Multis 2	

3.4	Calculate the minimum sample size that is required from a population with a standard deviation of 7 cm and margin of error of 1 cm for a 95% confidence level.		
		Multist	ructural
		2	uctural
		0	
		NR	
	A random sample of 144 coconuts has a mean weight of 680 grams with a standard deviation of 44 grams. Calculate the 90% confidence interval for the population mean.		
		Relat	ional
		3	
		2	
		1	
		0	
		NR	

		Assessor's use only
4.1	State one type of solution when solving systems of linear equations.	
		Unistructural
		1
		0
		NR
4.2	Give one advantage of using the bisection method to approximate the root of a function.	
		Unistructural
		1
		0
		NR
4.3	The cost of admission to a local dance concert was \$180 for 12 children and 3 adults. The admission to another dance concert was \$124 for 8 children and 3 adults.	
	Let: $x =$ the cost of admission for a child; and	
	y = the cost of admission for an adult.	
	Write a linear system of equations for the above situation.	
		Multistructural
		2
		1
		0
		NR

4.4	A system of linear equations is given below.	
	5x + y = 4	
	2x - 3y = 5	
	Describe the nature of the solutions.	
		Multistructural
		2
		1 0
		NR

4.5	Solve the following system of linear equations.	
	x + y - z = 4	
	x - 2y + 3z = -6	
	2x + 3y + z = 7	
		Relational
		3
		2
		1
		0 NR

4.6	Given that $f(x) = x^4 - 5x^3 + 9x + 3$ and the starting point $x_0 = 5$, use the Newton-Raphson method to compute x_1 , x_2 , x_3 and x_4 .		
	·		
		Extend	
		Abstra 4	
		3	
		2	
		0	
		NR	