MARKER CODE

Student Personal Identification Number

South Pacific Form Seven Certificate

CHEMISTRY

2021 QUESTION and ANSWER BOOKLET

Time allowed: Three hours

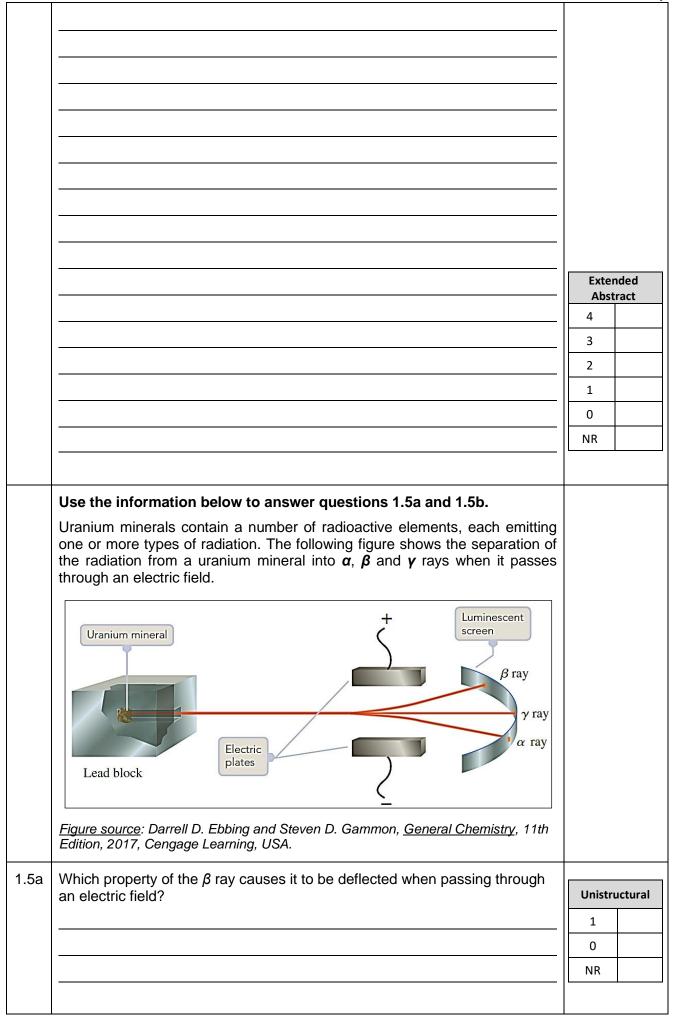
(An extra 10 minutes is allowed for reading this paper.)

INSTRUCTIONS

Write your **Student Personal Identification Number (SPIN)** in the space provided on the top right-hand corner of this page.

Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.

If you need more space for answers, ask the Supervisor for extra paper. Write your SPIN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.


	Skil	l Level & Nur	nber of Quest	ions	
Major Learning Outcomes (Achievement Standards)	Level 1 Uni- structural	Level 2 Multi- structural	Level 3 Relational	Level 4 Extended Abstract	Weight/ Time
Strand 1: Atomic Structure, Bonding and Related Properties Interpret information about selected properties of elements and compounds in relation to atomic structure.	6	2	2	1	20% 51 min
Strand 2: Energy Changes in Chemical and Physical Processes Use thermochemical data to determine energy changes in chemical and physical processes.	3	1	1	-	8% 21 min
Strand 3: Aqueous Equilibrium Systems Relate the properties of aqueous solutions to the nature and concentration of dissolved species.	4	2	2	-	14% 36 min
Strand 4: Oxidation–Reduction Reactions Apply oxidation–reduction principles to electrochemical cells and compare the relative strength of oxidants and reductants, and deduce the direction of spontaneous reactions.	-	2	-	-	4% 10 min
Strand 5: Organic Chemistry Use information about the structure and reactions of organic molecules to solve problems in organic chemistry.	5	6	1	1	24% 62 min
TOTAL	18	13	6	2	70% 180 min

Check that this booklet contains pages 2–19 in the correct order and that none of these pages are blank. HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

STRAND 1: ATOMIC STRUCTURE, BONDING AND RELATED PROPERTIES

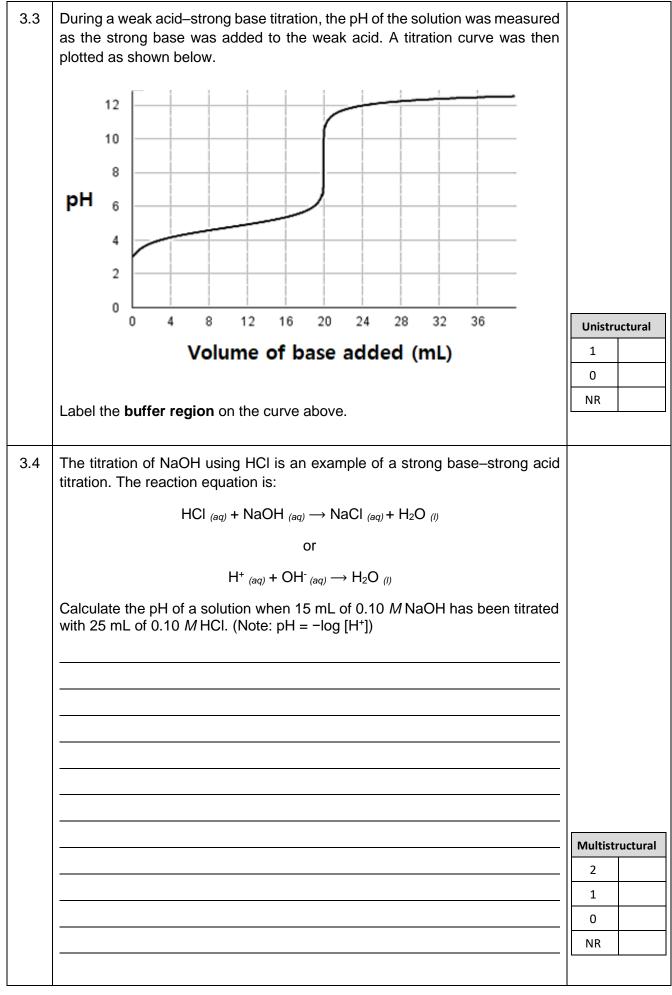
		Assessor's use only
1.1	Which of the following equations correctly shows the first electron affinity of fluorine? Write the letter of your choice in the given box.	
	A. $F^{(g)} \rightarrow F_{(g)} + e^-$	Unistructural
	B. $F_{(g)} \rightarrow F^{+}_{(g)} + e^{-}$	1
	C. $F_{(g)} + e^- \rightarrow F^{(g)}$	0
	D. $F^+_{(g)} + e^- \rightarrow F_{(g)}$	NR
1.2	The ground state electron configuration of the Chromium atom (Cr) is $[Ar]3d^54s^1$ instead of the expected [Ar]3d ⁴ 4s ² .	
	Explain the reason for this electron configuration.	
		Relational
		3
		2
		1
		0 NR
1.3	The graph below shows values of the first ionisation energy of Group 1 elements.	
	600	
	1 st Ionisation Energy (kJ/mol) 200	
	Figure source: <u>https://chem.libretexts.org/</u>	
	The ionisation energy depends on the force of attraction between the nucleus and valence electron of each element.	Multistructural
	List two factors that affect the force of attraction.	2
		1
		0
		NR

							Assessor'	s use only
	There	has been a	an increased de	answer questions 1.4	sers during the (
	-		•	ser products contain are given below.	a mixture of wa	ter and		
			Molecular Formula	Lewis Structure	Shape			
		Water	H ₂ O	н—ё—н		-		
		Ethanol	C₂H₅OH	н н н-с-с-ö-н н н	Tetrahedral			
1.4a	State	the shape c	of the H ₂ O mole	ecule.			Unistru	uctural
							0	
							NR	
	cause follow - - -	s for the ob ing concept molecular s molecular p intermolecu	served volume s: shapes; polarities; and ular forces of a	the water and ethanol reduction. Your response ttraction. to illustrate the ideas	onse should inclu	ude the		

1.5b	Uranium-235 $\binom{235}{92}$ U) is an isotope of uranium that can sustain a nuclear fission reaction.		
	Define nuclear fission reaction .	Unistru	uctural
		1	
		0	
		NR	
1.5c	Half-life ($t_{1/2}$) is the amount of time needed for half of a radioactive material to decay. Uranium-234 ($^{234}_{92}$ U) has a half-life of 245,000 years.		
	How long will it take for 20.0 grams of Uranium-234 to decay to 2.5 grams?		
		Relat	ional
		3	
		2	
		1	
		0	
		NR	
		<u> </u>	<u> </u>

To identify the metal ion present in an aqueous solution, a student carried out three separate tests and tabulated the observations as shown below. Image: Test 1 Test 2 Addition of aqueous sodium hydroxide Addition of ammonia (NH ₃) Addition of potassium thiocyanate (KSCN) Image: Solution Formation of green precipitate, which turned brown when exposed to air Formation of intense blood-red colour, which is stable for some time 1.6a The first conclusion the student makes is that the aqueous solution contains a transition metal ion. Multistructural 1.6a The first conclusion the student makes is that the aqueous solution contains a transition metal ion. Multistructural 1.6a The first conclusion the student makes is that the aqueous solution contains a transition metal ion. Multistructural 1.6a The first conclusion the student makes is that the aqueous solution contains a transition metal ion. Multistructural 1.6a The first conclusion the student makes is that the aqueous solution contains a transition metal ion. Multistructural 1.6b Based on the observations, identify the transition metal ion present in the aqueous solution. Image: transition with the aqueous solution. 1.7 Name the ion given below using IUPAC nomenclature: Image: transition with H ₃ 1 Image: transition with with with with with with with with		Use the info	ormation below to a	Inswer questions 1.	6a and 1.6b.		
Colour of aqueous solution Addition of sodium hydroxide (NaOH) Addition of ammonia (NHs) Addition of potassium thiocyanate (KSCN) Green Formation of green precipitate, which turned brown when exposed to air Formation of green precipitate, which turned brown when exposed to air Formation of intense blood-red colour, which is stable for some time 1.6a The first conclusion the student makes is that the aqueous solution contains a transition metal ion. Multistructural 2 1 0 Nhot two characteristics of a transition metal ion are confirmed by this experiment? Multistructural 1.6b Based on the observations, identify the transition metal ion present in the aqueous solution. Image: Constructural 1.7 Name the ion given below using IUPAC nomenclature: Image: Constructural Hyphic Hy							
aqueous solution sodium hydroxide (NaOH) Addition of ammonia (NH ₃) potassium thiocyanate (KSCN) Formation of green precipitate, which turned brown when exposed to air Formation of green precipitate, which turned brown when exposed to air Formation of green precipitate, which turned brown when exposed to air 1.6a The first conclusion the student makes is that the aqueous solution contains a transition metal ion. Multistructural 2 1 1 0			TEST 1	TEST 2	TEST 3		
Image: Green precipitate, which turned brown when exposed to air Formation of green precipitate, which turned brown when exposed to air Formation of intense blood-red colour, which is stable for some time 1.6a The first conclusion the student makes is that the aqueous solution contains a transition metal ion. Multistructural 2 1 0		aqueous	sodium hydroxide		potassium		
a transition metal ion. Which two characteristics of a transition metal ion are confirmed by this experiment?		Green	Formation of green precipitate, which turned brown when	green precipitate, which turned brown when	Formation of intense blood-red colour, which is stable for		
I.6b Based on the observations, identify the transition metal ion present in the aqueous solution. Unistructural 1 0 I.7 Name the ion given below using IUPAC nomenclature: NR	1.6a	a transition i Which two o	metal ion. characteristics of a tra				
Image: solution of the image: soluticance image: solution of the image: solution o						Multistr	ructural
Image: solution of the observations, identify the transition metal ion present in the aqueous solution. 0 Image: solution. Image: solution. Image: solution. I						2	
1.6b Based on the observations, identify the transition metal ion present in the aqueous solution. Unistructural 1 1 0						1	
1.6b Based on the observations, identify the transition metal ion present in the aqueous solution. Unistructural 1 0						0	
aqueous solution. Unistructural 1 1 0 NR 1.7 Name the ion given below using IUPAC nomenclature: $\left[\begin{array}{c} NH_3 \\ H_3N - C_1u - NH_3 \\ NH_3 \end{array} \right]^{2+}$ Unistructural Unistructural						NR	
$\begin{bmatrix} NH_3 \\ H_3N - Cu - NH_3 \\ NH_3 \end{bmatrix}^{2+}$ Unistructural	1.6b			tify the transition met	al ion present in the	1	ıctural
	1.7	Name the io	- г	NU 704	e:		uctural
						-	
							<u> </u>

STRAND 2: ENERGY CHANGES IN CHEMICAL AND PHYSICAL PROCESSES


	·	Assessor'	's use only
2.1	Which of the following is correct about energy and chemical bonds? Write the letter of your choice in the given box.A. Stronger bonds involve less energy.B. All bonds have the same bond energy.	Unistru 1	uctural
	C. Bond energy values are always positive.	0	
	D. Energy is absorbed during bond formation.	NR	
2.2	Name the enthalpy change of the process given below:	Unistru	uctural
	$\text{Li}_{(g)} \rightarrow \text{Li}_{(g)}^{+} + \text{e}^{-} \Delta H^{\circ} = 572.3 \text{ kJ/mol}$	1	
		0	
		NR	
	Use the information below to answer questions 2.3a and 2.3b. The reaction of methane (CH ₄) with oxygen (O ₂) forms carbon dioxide (CO ₂) and water (H ₂ O), and releases 890 kJ of energy per mole of methane in the process.		
2.3a	Identify the enthalpy change for the given process.	Unistru	uctural
		0 NR	
2.3b	Write a thermochemical equation for the given process.		
		Multist	ructural
		2	
		1	
		0	
		NR	

				Assessor'	
Ammonium su preservative. It sulfuric acid (H	lphate, (NH₄)₂SO₄, is us t is prepared industrially l₂SO₄):	ed as a fire retarda by the reaction of	ant and wood ammonia (NH ₃) wit	th	
	2NH _{3 (g)} + H ₂ SO ₄	$_{(aq)} \rightarrow (NH_4)_2SO_4$ (s))		
The value of Δ	H° _{rxn} is -179.4 kJ/mol.				
	rom the table below to c ² f) of (NH ₄) ₂ SO _{4 (s)} in kJ/r		ard enthalpy of		
	Substance	ΔH^{o}_{f} (kJ/mol)			
	NH _{3 (g)}	-45.9			
	H ₂ SO _{4 (aq)}	-909.3			
				_	
					iona
				 	iona
				-	iona
				3 2 1	iona
				3 2	iona

STRAND 3: AQUEOUS EQUILIBRIUM SYSTEMS

		Assessor's	use only
	Use the information below to answer questions 3.1a and 3.1b.		
	Methanol, CH ₃ OH, is manufactured industrially by the reaction:		
	$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_{3}OH_{(g)}$		
	At 500 K, the value of the equilibrium constant (K_c) for this reaction is 10.5.		
3.1a	Which of the following best describes the reaction above? Write the letter of your choice in the given box.		
	A. The reaction is yet to achieve equilibrium.	Unistru	ctural
	B. The reaction proceeds far towards completion.	1	
	C. The reaction is favoured towards the reactants.	0	
	D. The concentrations of reactants and product are equal.	NR	
3.1b	At 500 K, a two-litre reaction vessel contains a gaseous mixture of 0.20 moles of CO and 0.20 moles of H_2 at equilibrium.		
	Calculate the concentration of CH_3OH in the mixture.		
		Delet	
		Relati	onai
		2	
		1	
		0	
		NR	

		1	
	Use the information below to answer questions 3.2a and 3.2b.		
	HF, HCI, HBr and HI are called binary acids . HCI, HBr and HI are all strong acids, whereas HF is a weak acid ($K_a = 7.1 \times 10^{-4}$). HF ionises in aqueous solution as follows:		
	$HF_{(aq)} + H_2O_{(l)} \rightleftharpoons F^{-}_{(aq)} + H_3O^{+}_{(aq)}$		
3.2a	Name the acid, HF.	Unistru 1 0 NR	uctural
3.2b	Calculate the hydronium ion (H_3O^+) concentration of a 0.60 <i>M</i> aqueous solution of HF.		
		Relat	ional
		3	
		1	
		0	
		NR	

		Assessor 5 use only
	Use the information below to answer questions 3.5a and 3.5b.	
	The solubility product of magnesium hydroxide, Mg(OH) ₂ , at 298 K is 2.0×10^{-11} mol/L.	
3.5a	Define solubility product.	Unistructural
		1
		0
		NR
3.5b	Write the solubility product expression for magnesium hydroxide.	_
		-
		Multistructural
		2
		_ 1
		0
		NR
L	1	1

STRAND 4:	OXIDATION-REDUCTION REACTIONS
-----------	--------------------------------------

		Assessor	s use only
	 Use the information below to answer questions 4.1a and 4.1b. A galvanic cell is constructed from the following half-cells linked by an external circuit and a K₂SO₄ salt bridge: a Mg (s) electrode in MgSO₄ solution serving as the anode a Ni (s) electrode in NiSO₄ solution serving as the cathode 		
4.1a	Describe the process through which electrical energy would be produced by this galvanic cell.	Multistr 2 1 0 NR	ructural
4.1b	Use the IUPAC cell notation to represent this galvanic cell.	Multistr 2 1 0 NR	ructural

STRAND 5: ORGANIC CHEMISTRY

		Assessor'	s use only
	Use the information below to answer questions 5.1a and 5.1b.		
	The two isomers of a compound, $CH_3CH_2CH(NH_2)CH_3$, are shown below.		
	$\begin{array}{c c} \ddot{N}H_2 & \ddot{N}H_2 \\ \downarrow \\ H_3C & CH_2CH_3 \\ H & CH_3CH_2 & CH_3 \\ H & H \end{array}$		
5.1a	Identify the type of isomerism shown above.	Unistru	ictural
		1 0	
		NR	
5.1b	Name CH ₃ CH ₂ CH(NH ₂)CH ₃ using IUPAC nomenclature, while clearly outlining the steps used in the naming procress.		
		Relati	in mal
		3	ionai
		2	
		1 0	
		NR	

		Assessor'	s use only
	Use the information below to answer questions 5.2a and 5.2b.		
	Proteins are examples of naturally occurring polymers that contain the repeating units shown below.		
5.2a	Idenitify the functional group in this unit.	Unistru	uctural
		1	
		0 NR	
5.2b	The polypeptide chains of proteins form through a reaction known as condensation polymerisation.		
	State one characteristic of this reaction.	Unistru	ictural
		1	
		0 NR	
5.3	Write a balanced reaction equation for the formation of a polymer from the two compounds shown below. $ \begin{array}{c} $	Multistr	uctural
		2 1 0 NR	

			•
5.4	Alcohols are often referred to as the central functional group in organic chemistry because all other functional groups can be obtained from alcohols.		
	Discuss one reaction of alcohols that leads to functional group change and the relevance of this reaction in everyday life.		
	Your response should include the following:		
	- the reaction conditions required;		
	 the type of reaction occuring; the structure of the main product formed; and 		
	- real life application.		
		Exter	
		Abst 4	ract
		3	
		2	
		1	
		0	
		NR	
		L	

	Use the information below to answer questions 5.5a–5.5c.		
	In the reaction shown below, where compound A converts to compound B , R represents any general alkyl group.		
	$ \begin{array}{cccc} $		
5.5a	Identify the class of compounds that A belongs to.	Unistru	uctural
		1	
		0	
		NR	
5.5b	State a property of compound B .	Unistru	uctural
		1	
		0	
		NR	
5.5c	Describe the reaction conditions needed for the above reaction to occur.		
		Multistr	ructural
		2	
		1	
		0	
		NR	
5.6	For the acidic hydrolysis reaction given below, draw the structures of products \mathbf{C} and \mathbf{D} . $\begin{bmatrix} \mathbf{O} \\ \parallel \\ \mathbf{CH}_{3}\mathbf{CH}_{2}\mathbf{CH}_{2}\mathbf{COCH}_{2}\mathbf{CH}_{3} + \mathbf{H}_{2}\mathbf{O} \xleftarrow{\mathbf{H}^{+}} \mathbf{C} + \mathbf{D} \\ \hline \mathbf{Product } \mathbf{C} \end{bmatrix}$ Product \mathbf{C} Product \mathbf{D}		
		Multistr 2 1 0 NR	ructural

		Assessor's	s use only
	Use the information below to answer questions 5.7a and 5.7b.		
	The structure of a ketone is given below.		
	$\begin{array}{c} O & CH_3 \\ H_3 - C - CH_2 - CH - CH_3 \end{array}$		
5.7a	Draw the structure of an isomer of the ketone and state the type of isomerism shown.		
	Structure of isomer:		
		Multistru	uctural
	Type of isomerism:	2	
	Type of isomensm.	1	
		0 NR	
5.7b	Ketones can be reduced to alcohols under suitable conditions. Complete the following equation for the reduction reaction of the given ketone, indicating the reagent and the main product.	Multistru	uctural
	$\begin{array}{c c} O & CH_3 \\ H_3 - C - CH_2 - CH - CH_3 \end{array} \qquad $	2 1 0 NR	

		Assessor's use only
5.8	Haloalkanes undergo elimination reactions to produce alkenes when heated under reflux with a concentrated solution of potassium hydroxide in ethanol. Write an equation for a reaction where a suitable haloalkane converts to CH ₃ CH=CH ₂ in an elimination reaction.	Multistructural

THE END