

South Pacific Form Seven Certificate PHYSICS

2020

QUESTION and ANSWER BOOKLET (1)

Time allowed: Three hours
(An extra 10 minutes is allowed for reading this paper.)

INSTRUCTIONS

Write your Student Personal Identification Number (SPIN) in the space provided on the top right-hand corner of this page.

Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
If you need more space for answers, ask the Supervisor for extra paper. Write your SPIN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

Major Learning Outcomes (Achievement Standards)	Skill Level \& Number of Questions				Weight/ Time
	Level 1 Unistructural	Level 2 Multistructural	Level 3 Relational	Level 4 Extended Abstract	
Strand 1: Mechanics Demonstrate an understanding of the physical phenomena, concepts, principles and relationships involved in mechanics.	7	7	3	-	$\begin{gathered} 30 \% \\ 78 \mathrm{~min} \end{gathered}$
Strand 2: Waves Demonstrate an understanding of the physical phenomena, concepts, principles and relationships related to waves.	4	2	1	1	$\begin{gathered} 15 \% \\ 38 \mathrm{~min} \end{gathered}$
Strand 3: Electricity and Electromagnetism Demonstrate understanding, by explaining and solving problems related to the physical phenomena, concepts, principles and relationships involved in electricity and electromagnetism.	4	-	2	-	$\begin{gathered} 10 \% \\ 26 \mathrm{~min} \end{gathered}$
Strand 4: Atomic and Nuclear Physics Demonstrate an understanding of the physical phenomena, concepts, principles and relationships involved in atomic and nuclear physics.	4	2	1	1	$\begin{gathered} 15 \% \\ 38 \mathrm{~min} \end{gathered}$
TOTAL	19	11	7	2	$\begin{gathered} 70 \% \\ 180 \mathrm{~min} \end{gathered}$

Check that this booklet contains pages 2-17 in the correct order and that none of these pages are blank.

STRAND 1: MECHANICS

STRAND 2
WAVES

2.1d In a double-slit interference experiment, light from a lamp passes through a colour filter that transmits blue light only. The blue light passes through two narrow parallel slits and forms alternating bright and dark bands on a distant screen.

Source: https://www.researchgate.net/figure/interference-Youngs-double-slit-method-His-interest-in-wave-behaviour-led-him-also-to fig2 265044889

Predict, with reasons, the effect on the interference pattern if:
(i) the blue light is replaced by a violet one;
(ii) the screen is brought close to the double slits; and
(iii) the set-up is submerged in water.
(i).
\qquad
\qquad
\qquad
\qquad
(ii).
\qquad
\qquad
\qquad
\qquad
(iii).

Extended Abstract	
4	
3	
2	
1	
0	
$N R$	

STRAND 3:

ELECTRICITY AND ELECTROMAGNETISM
Assessor's use only

| 3.1 | DC CIRCUITS AND CAPACITANCE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Use the information given below to answer questions 3.1a and 3.1b. | |
| Given below is a complex electrical circuit that has more than one voltage | |
| source. To determine the value of an unknown voltage, current or | |
| resistance, one needs to use and apply Kirchhoff's (two) Laws. | |

| 3.1 c | One day Edward dismantled an old
 radio and found a capacitor inside
 which he pulled apart. It consisted of
 two long sheets of aluminium foil
 separated by a sheet of waxed paper,
 as shown here. The capacitor had a
 value of $1.0 \times 10^{-8} \mathrm{~F}$ written on it. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

STRAND 4: ATOMIC AND NUCLEAR PHYSICS

4.2	NUCLEAR PHYSICS		
	Use the information given below to answer questions 4.2a and 4.2b. Listed below are characteristics of radioactive radiations: I. Travels at the speed of light. II. Travels at about one-tenth $\left(\frac{1}{10}\right)$ the speed of light. III. Travels at about nine-tenths $\left(\frac{9}{10}\right)$ the speed of light.		
4.2a	Identify which of the three characteristics (I, II, and III) listed above is of alpha radiation.	Unistructural	
		1	
		0	
		NR	
4.2b	Identify which of the three characteristics (I, II and III) listed above is of beta radiation.	Unistructural	
		1	
		0	
		NR	
4.2c	Radium, Ra, atomic number 88 , and mass number 226, is a radioactive chemical element discovered by Marie Curie. It emits an alpha particle and gamma rays, and thereby changes into another element, Radon, Rn. Write a balanced nuclear equation for the radioactive decay described above.		
		Multistructural	
	\longrightarrow	2	
		1	
		0	
		NR	

