

South Pacific Form Seven Certificate

MATHEMATICS WITH STATISTICS 2017

QUESTION and ANSWER BOOKLET

Time allowed: Three hours

(An extra 10 minutes is allowed for reading this paper.)

INSTRUCTIONS

Write your **Student Personal Identification Number (SPIN)** in the space provided on the top right hand corner of this page.

Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.

Show all working. Unless otherwise stated, numerical answers correct to **three significant figures** will be adequate.

If you need more space for answers, ask the Supervisor for extra paper. Write your SPIN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

	Skil				
Major Learning Outcomes (Achievement Standards)	Level 1 Uni- structural	Level 2 Multi- structural	Level 3 Relational	Level 4 Extended Abstract	Weight/ Time
Strand 1:Probability Develop knowledge and skills related to Probability in order to solve problems and to investigate situations involving elements of chance.	10	4	2	1	28% 72 min
Strand 2:Modelling using graphical methods Model situations using graphical methods in order to solve problems.	4	1	4	1	22% 57 min
Strand 3:Statistical Investigations Carry out statistical investigations and understand statistical processes.	-	3	-	-	6% 15 min
Strand 4:Numerical & algebraic methods Use numeric and algebraic methods to solve problems.	4	3	-	1	14% 36 min
TOTAL	18	11	6	3	70% 180 min

Check that this booklet contains pages 2-18 in the correct order and that none of these pages is blank.

HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

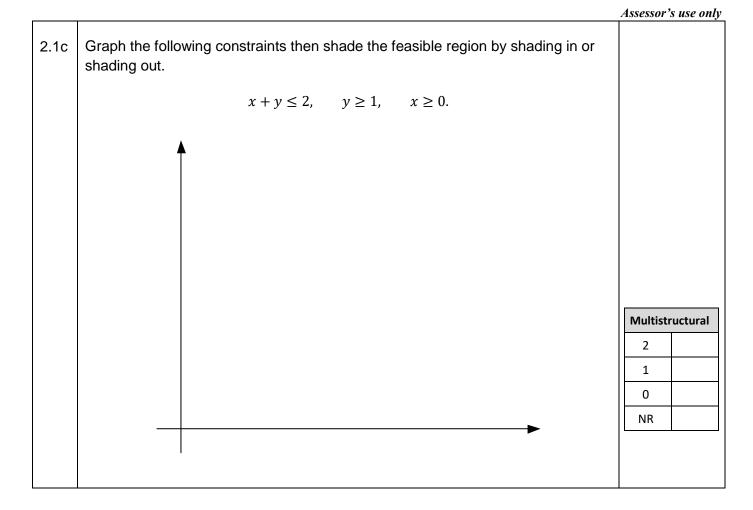
STRAND 1: PROBABILITY

		Assessor	's use of
.1ai	What is an <i>event</i> ?		
		Unistr	uctural
		1	
		0	
		NR	
.1aii	A die whose faces are labelled 1, 2, 3, 4, 5 and 6 is rolled.		
	Identify the event "result is odd".		
		Unistr	uctural
		1	
		0	
		NR	
	If the dollar profit is X, what is the expected profit per game?	Rela 3	tional
		2	
		0	
		NR	

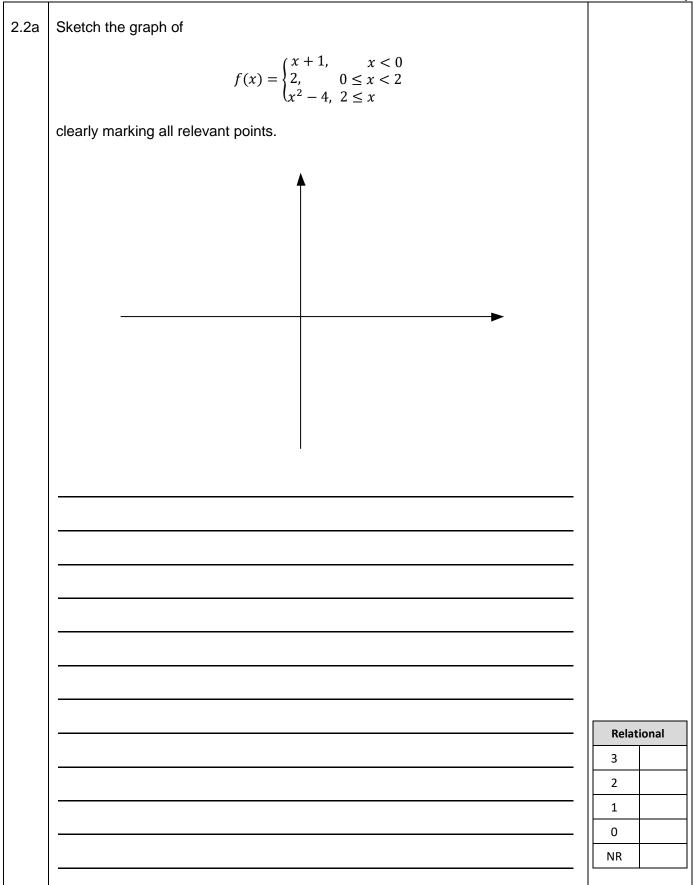
Assessor's use	only

	Use the information below to answer Question 1.1c.		
	The probability of a student failing (not achieving) a certain bachelor's degree programme at Kanikani University is 0.014. The probability of a student to graduate with (achieving) a bachelor's degree in the same university is 0.87.		
1.1c	What is the probability of a randomly selected student to either achieve or not achieve a bachelor's degree? Provide reasons with your working.		
		_	
		Exter Abst	
	·	4	
		3	
		2	
		1	
		0	
		NR	
1.1di	What does it mean when event X is independent of event Y?		
		Unistru	ictural
		1	
		0 NR	
	Use the information below to answer Question 1.1dii.		
	A basket contains 4 red balls and 5 yellow balls. A ball is drawn at random. Its colour is recorded then returned into the same basket. The exercise is then repeated once.		
1.1dii	State one pair of independent events .		
		Unistru	ictural
		1	
		0	
		NR	

							Assessor	's use only
1.2ai	Define <i>condit</i>	ional probal	bility.					
							Unistri	uctural
							- 1	
							- 0	
							NR	
1.2aii	Define margir	nal probabili	ty.					
							Unistr	uctural
							1	
							- 0	
							NR	
1.2bi	Define varian	ce.					_	
							Unistr	uctural
							1	
							- 0	
							_ NR	
1.2bii	Calculate the	variance of th	ne discrete rar	ndom variable	Х.			
	x	0	1	2	3	4		
	P(X=x)	0.1	0.2	0.3	0.2	0.2		
	,							
							_	
							_	
							Multist	ructural
							2	
							1	
							- 0	
							NR	

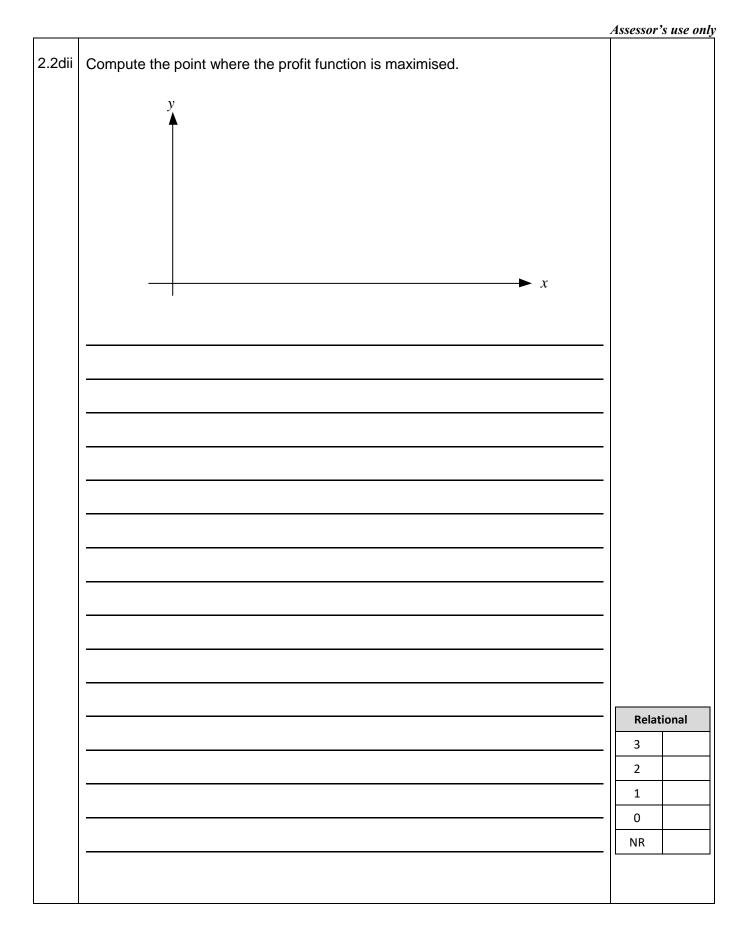

				Assesso	r's use only
1.2ci	What does	s it mea	n for two events A and B to be mutually exclusive ?		
				_	
				_	
				_	
				Unist	ructural
				0	
				NR	
	For Ques	tion 1.2	cii, circle the letter of the best answer.		
1.2cii	Which of t	he follov	wing pair of events is mutually exclusive?		
		•	A person is a teacher at Smart College.		
		A.	A person drives to Smart College every day.		
		В.	A person turns left.	Unist	ructural
			A person turns right. A person turns left.	1	
		C.	A person scratches his head.	0	
				NR	

		Assessor	s use only
	Use the information below to answer Questions 1.2di and 1.2dii.		
	The mean salary at Wanavu Fisheries is \$34,000 per annum with a standard deviation of \$600. All employees got a \$500 per annum rise to celebrate and mark the occasion when the company won the national trade award for being the highest exporter of the year in the fisheries sector.		
1.2di	What will be the new mean and standard deviation of the salaries?		
		Multistr	uctural
		2	
		1	
		0	
		NR	
1.2dii	If instead of a flat rise, each employee had an income increase of 2%, what would be the new mean and standard deviation of the salaries?		
		Relat	ional
		3	
		2	<u> </u>
		1	
		0	
		NR	


1.2e	State one condition that must be satisfied in order to apply Poisson probability distribution to a random variable.		
		Unistru	ictural
		1	
		0	
		NR	
	Use the information below to answer Questions 1.2fi and 1.2fii.		
	A washing machine in a Laundromat breaks down at an average of three times per month. Use the Poisson probability distribution formula to answer questions that follow.		
1.2fi	Find the probability that during the month the machine will have exactly two breakdowns.		
		Multistr	uctural
		2	
		1	
		0	
		NR	
1.2fii	Find the probability that during the month the machine will have at most one breakdown.		
		Multistr	uctural
		2	
		1	
		0	
		NR	

STRAND 2: MODELLING USING GRAPHICAL METHODS

		Assessor's use only
2.1ai	What is a continuous function ?	
		Unistructural
		1
		0
		NR
2.1aii	Give one particular feature of a linear function.	
		Unistructural
		1
		0
		NR
2.1bi	State the general form of a power function, and clearly indicate the relevant variables and constants.	
		Unistructural
		1
		0
		NR
2.1bii	Sketch the graph of the function $y = 2x^{\frac{1}{3}}$, for $x \ge 0$, clearly showing all relevant intercepts.	
		Unistructural
		1
		0
		NR



Assessor's use only

2.2b	A population of creatures is given in mil where <i>t</i> is in years. The population star When does the population become exti	ts to decrease after a certain time.	Assessor's use only Extended Abstract 4 3 2
			1
			NR
2.2c	Sketch the graph of $y = 4.5x^{-1}$ when continuous interval [-3, 3] and comment on the lime Graph:		
			Relational3210NR

	Use the information below to answer Questions 2.2di and 2.2dii.		
	Mike's Famous Toy Trucks manufactures two kinds of toy trucksstandard model and a deluxe model. In the manufacturing process each standard model requires 2 hours of grinding and 2 hours of finishing, and each deluxe model needs 2 hours of grinding and 4 hours of finishing. The company has two grinders and three finishers, each of who works at most 40 hours per week. Each standard model toy truck brings a profit of \$3 and each deluxe model a profit of \$4. We assume that every truck made will be sold.		
	Let: <i>x</i> = Number of standard models made		
	y = Number of deluxe models made		
2.2di	Identify and give the profit function and the constraints.		
		Relat	ional
		3	
		1	
		0	
		NR	

STRAND 3: STATISTICAL INVESTIGATIONS

															Assessor	's use only
	Use the info	rmation	below	to a	nswo	er qı	uest	ions	3.1a	i anc	3. 1	aii.				
	Form 7 stude	he following sets of mathematics marks are those obtained by a group of orm 7 students in two different exams. The top row gives the mark in the erm 3 school exam. The bottom row gives the mark in the external exam.														
	School (x) 70 44 43 65 53 65 48 59 61 86 69 70 61 45															
	External (y)	65 52	2 53	63	53	62	51	58	58	59	56	60	56	55		
3.1ai	Calculate the	e correlat ote that	ion coe	fficie	nt r	betw	veen	the	wo s	ets o	f ma	rks.				
		$S_{xy} = \sum x_{y}$	$y - \frac{\sum x \sum}{n}$	$\frac{y}{z} = 4$	485.2	2143	, <i>SS</i>	_{yy} =	$\sum y^2$	$-\frac{(\Sigma)}{n}$	$\frac{(1)^2}{2} =$	238.	3571	l, and		
	SS	$S_{xx} = \sum x$	$\frac{2}{2} - \frac{(\sum x)}{n}$	$\frac{2}{-} = 1$	1972	.929										
			n												_	
															_	
															-	
															-	
															-	
															- Multist	ructural
															2	
															- 1	
															0	
															NR	
3.1aii	Comment on	the tren	ds shov	vn by	/ the	two	sets	s of m	narks	5.						
															Multist	ructural
															2	
				_				_		_	_				1	

		Assessor	's use only
3.2a	A sample of 60 bags of flour was found to have a mean mass of 1.13 kg and a standard deviation of 0.04 kg.		
	Find the 95% confidence interval for the mean weight of all such bags.		
			ructural
		2	
		0	
		NR	

Assessor's use only 4.1a State the possible different types of solutions in solving a system of linear equations. Unistructural 1 0 NR 4.1b Determine if $f(x) = \frac{3}{x+1}$ has a root on the closed interval [2, 5]. Unistructural 1 0 NR 4.1c State one advantage of using the Newton-Raphson method. Unistructural 1 0 NR 4.1d By inspection, what method is best to solve the following system of linear equations? Unistructural 1 DO NOT ATTEMPT TO SOLVE THE SYSTEM. 0 NR

STRAND 4: NUMERICAL AND ALGEBRAIC METHODS

Assessor's us	e only
---------------	--------

· · · · · ·		1	
4.2a	Find a value of a and k such that the following system of linear equations is consistent with infinitely many solutions.		
	$\begin{array}{rcl} 8x &+ & ay &= & k \\ 2x &+ & y &= & 1 \end{array}$		
		Multistr	uctural
		2	
		1	
		0	
		NR	
4.2b	There are three numbers <i>x</i> , <i>y</i> and <i>z</i> . The largest is two and a half times bigger than the smallest number. The sum of all three numbers is 24.5. Double the largest plus the other two numbers is 37. Form a system of three linear equations and find the three numbers.		
		Exter Abst	
		4	
		3	
		2	
		1	
		0 NR	

Assessor's	use	onlv
110000000000000000000000000000000000000		····

		Assessor's use only
4.2c	Consider the function $f(x) = \frac{1}{4x-1}$.	
	Comment on why the Bisection method cannot be applied to $f(x)$ on interval $[0, 1]$.	
		-
		-
		-
		Multistructural 2
		- 1 0 NR
4.2d	Consider $f(x) = 2x^2 - 4x + 1$. Use the Newton-Raphson method with an initial value of $x_0 = -0.1$ to give two approximations x_1 and x_2 .	
		-
		-
		-
		-
		- Multistructural
		- <u>1</u> - 0
		- NR