

South Pacific Form Seven Certificate MATHEMATICS WITH CALCULUS 2017

QUESTION and ANSWER BOOKLET

Time allowed: Three hours

(An extra 10 minutes is allowed for reading this paper.)

INSTRUCTIONS

Write your **Student Personal Identification Number (SPIN)** in the space provided on the top right hand corner of this page.

Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.

Show all working. Unless otherwise stated, numerical answers correct to **three significant figures** will be adequate.

If you need more space for answers, ask the Supervisor for extra paper. Write your SPIN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

Skill Level & Number of Questions				Weight/	
Major Learning Outcomes (Achievement Standards)	Level 1 Uni- structural	Level 2 Multi- structural	Level 3 Relational	Level 4 Extended Abstract	Time
Strand 1: Algebra Apply algebraic techniques to real and complex numbers	17	-	1	-	20% 52 min
Strand 2: Trigonometry Use and manipulate trigonometric functions and expressions	-	2	2	-	10% 24 min
Strand 3: Differentiation Demonstrate knowledge of advanced concepts and techniques of differentiation	-	3	2	2	20% 52 min
Strand 4: Integration Demonstrate knowledge of advanced concepts and techniques of integration.	-	3	2	2	20% 52 min
TOTAL	17	8	7	4	70% 180 min

Check that this booklet contains pages 2-24 in the correct order and that none of these pages is blank. A 4-page booklet (No. 108/2) containing mathematical formulae and tables is provided.

STRAND 1: ALGEBRA

Answer All Questions

1.1	Solve the inequation: $\frac{x-3}{2} - 4 \le \frac{1-x}{3}$		
		Unistr	uctural
		1	detarar
		0 NR	
1.2	The focal length of a lens is given by $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$. Make 'v' the subject of the		
	formula.		
		Unistr	uctural
		1 0	
		NR	

If $x^2 - 6x + 4 + b = (x + a)^2$, where 'a' and 'b' are constants, find the value of 'b'.		
	Unistrue	ctur
	0	
	NR	
Simplify $\frac{(2\sqrt{x})^6 y^5}{8(x y^2)^2}$		
	Unistru	ctur
	1 0	

1.5	Find the third term in the binomial expansion of $(2-3x)^7$	
		Unistructural
		1
		0 NR
1.6	If $\log_3(x+100) - \log_3 2 = 4$ find the value of 'x'	
		Unistructural 1
		0
		NR
1.7	If $f(z) = z^2 + 3z + 1 - 4i$, find the remainder when f(z) is divided by $(z - 2i)$.	
		Unistructural
		1
		0 NR

		Assessor'	s use on
	For questions 1.8 and 1.9 use the diagram below:		
	2 iy		
	1 • u		
	-4 -3 -2 -1 1 2 3 4 X		
	-1 -1 V		
	-2		
1.8	Write the complex number $2\mathbf{u} - \overline{v}$ in the form $\mathbf{a} + \mathbf{b}$, where $\mathbf{a}, \mathbf{b} \in R$.		
		-	
		-	
,		-	
		Unistru 1	ctural
		- 0	<u> </u>
		NR	

Write the complex number u in the polar form.

Unistructural	
1	
0	
NR	

1.10	Factorize the expression $f(x) = 4x^2 + 25$.		
	[Hint: use the property that $i^2 = -1$]		
		Unistru	uctural
		0	
		NR	
1.11	Simplify the following surd expression: $3\sqrt{2} + (1 - \sqrt{2})^2 - 2\sqrt{8}$.		
		Unistru	uctural
		0	
		NR	

1.12	Solve the equation $\frac{x+3}{2} - \frac{4x-1}{3} = 1$	
		Unistructural
		1 0 NR
1.13	Divide the polynomial $f(x) = 2x^3 - x^2 + 3x - 5$ by $(x - 1)$	
		Unistructural
		0 NR

		Assessor's use only
1.14	Use the quadratic formula to find the solution of the equation $2x^2 - 3x + 1 = 0$	Assessor's use only
		Unistructural 1 0 NR
1.15	Use the Factor Theorem to factorize the expression $f(x) = x^3 - 7x + 6$	Unistructural 1 0 NR

I		Assessor's	s use only
1.16	Two straight lines $2y + x = 4$ and $y - 3x = 1$ meet at point B. Find the coordinates of B		
		Unistru	ctural
		0	
		NR	
1.17	Find x if $8^x = 32^{x+2}$		
		Unistru	ictural
		0	
		NR	
		1417	

1.18	Use de Moivre's Theorem to find the three roots of the complex number	
	equation $\mathbf{z}^3 = w$, where $w = 8i$.	
		Relational
		2
		0
		NR NR

STRAND 2: TRIGONOMETRY Answer All Questions

Assessor's use only

The diagram shows part of the graph of $f(\theta) = \sin \theta$ for $0 \le \theta \le \pi$ radians.

Sketch in the grid above the graph of $f^{-1}(\theta)$ and hence write the domain of $f(\theta)$ for which $f^{-1}(\theta)$ is a function

	Multistr	uctural
	2	
	1	
	0	
	NR	

2.2 Prove that $1 + \cot^2 \theta = \csc^2 \theta$

Multistr	uctural
2	
1	
0	
NR	

Use a compound angle formula to find the values of x which satisfy the equation: $2\cos 45\cos x - 2\sin 45\sin x = 1$, where $0 \le x \le 90^\circ$

Relat	ional
3	
2	
1	
0	
NR	

2.4 At a point along the Honiara coast the depth above the sea floor of tidal sea water is maximum at 5.5 m deep at 4.30 a.m. and a minimum of 1.1 m deep at 10 a.m.

Write an equation, a model of the form $h(t) = A \sin[B(t+C)] + D$, for the periodic depth h' of the tidal sea water as a function of the time, t' in hours.

Relat	ional
3	
2	
1	
0	
NR	

STRAND 3: DIFFERENTIATION Answer All Questions

	A particle has a distance-time relation given by $d = 3t^2 - 2t + 5$. How far does it move before coming to a stop?		
		Multist	ructural
		2	
		1	
		0 NR	
4		L	
.2	Find the equation of the tangent to the curve $y = \frac{1}{2x-1}$ at the point $(2,\frac{1}{3})$.		
		Multisti	uctural
		2	ructural
			uctural

14 Assessor's use only Find the values of x at which $f(x) = \frac{1}{1-\sin^2 x}$ is discontinuous. 3.3 Multistructural 2 0 Use implicit differentiation to find $\frac{dy}{dx}$ given that $xe^{x+y} = 5\sin y$ 3.4 Relational 3 2 1

 NR

Sketch in the axes below the graph of $f(x) = \frac{4}{(x-1)^3}$ by considering the limiting behaviour of f(x) at infinity and near the asymptote x = 1.

Relat	ional
3	
2	
1	

Assessor's use only

0 NR

3.6	The surface area S of a spherical balloon rising in the atmosphere increases at a	
	rate of 20 cm ² per second. At what rate does the volume of the balloon increase	
	when its radius is 4 cm? [These formulae are needed: $S=4\pi r^2$ and $V=\frac{4}{3}\pi r^3$]	
		Extended
		Abstract 4
		3
		2
		1
		0
		NR

3.7	A trapezium has the diameter of a semi-circle as its longer side CD. The
	centre of the circle is O and the radius is 'r'. The diagram shows three
	triangles that will help in finding the area of the trapezium.

Find the value of the angle θ that makes the area of the trapezium	n a
maximum.	

maximum.	

Extended Abstract		
4		
3		
2		
1		
0		
NR		

STRAND 4.0 INTEGRATION **Answer All Questions**

Assessor's use only

4.1 Find the volume of the solid formed when the graph of $y = 3x^2$ between x = 0 and x = 2 in the diagram is rotated 360° about the x-axis.

Multistructural	
2	
1	
0	
NR	

4.2 Radioactive carbon-14 has a half - life of 5750 years. Initially at t = 0there are 100 g in a sample. If the rate of decay of carbon-14 is given by: $\frac{dN}{dt} = -0.0012N$, how much will be left after 1000 years?

dt	,	

Multistructural	
2	
1	
0	
NR	

Multistructural	
2	
1	
0	
NR	

4.3 The diagram at right shows the bowl formed when the graph of $y=x^2$ between y=0 and y=9 is rotated 360° about the y-axis.

Calculate the volume of the bowl.

[Hint:
$$V = \pi \int_a^b x^2 dy$$
]

Multistructural	
2	
1	
0	
NR	

how long will it tal	 			
				Relation 3
				2
				1

4.5 The diagram shows the graph of $f(x) = x^3$ and the region bounded by the line y = 1, x = 0 and the graph of f(x).

Find the volume of the solid formed when the shaded region is rotated 360° about the line y = 1.

•	

Relational	
3	
2	
1	
0	
NR	

4.6 The diagram below (Fig.1) shows the shaded area between the graphs of the functions $v(x) = 1 + x^2$ and the line $u(x) = \sqrt{2}x$ and between the lines x = 0 and x = 2. When this area is rotated 360° around the x-axis the solid in Fig.2 is formed. Calculate the volume of the solid so formed in Fig.2.

Abstract		
4		
3		
2		
1		
0		
NR		

4.7	The rate of cooling of an object, $\frac{dT}{dt}$, is proportional to the difference between the		
	temperature T of the object and the temperature T _m of the surrounding medium.		
	The original temperature of the object at $t = 0 \ min$ is 80 °C, and the		
	surrounding medium is at a constant temperature of 28 °C. It is also observed		
	that after 10 minutes the object has cooled down to a temperature of 64 °C.		
	Show that the temperature of the cooling object at any time t minutes is given by		
	$T(t) = 52e^{-0.04t} + 28$		
		Exter Abst	
		4	
		3	
		2	
		1	
		0	
		NR	

E . D. I.B. KN I I	
Extra Blank Page If Needed	